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ABSTRACT

Presented in this report are finite-difference heat-transfer equa-
tions for transient, radial heat flow in spheres and cylinders and for
transient, one-dimensional heat flow in flat plates. The derived equations
apply to structures before, during, and after surface recession for all
three basic structure configurations and for several generic material
skin combinations.

For each skin configuration, the accuracy of the finite-difference
procedure, compared with exact analytical methods, depends on opti-
mum selection of the calculation time increment and the incremcntal
distance between temperature nodes in relation to the material thermal”
properties and on the closeness of the approximate temperature gradi-
ents to the true gradients. In addition to these common criteria, the
magnitude of the surface recession rate in relation to the calculation
time increment and temperature nodal point distance affects the
accuracy of the finite-difference temperature results. When compared
with exact solutions applicable to semi-infinite flat plates undergoing
surface recession, the calculated finite-difference temperature gradi-
ents during recessicn are very accurate when the amount of material
removed during 1 calculation time increment is equal to or less than

one fourth of the selected distance increment between temperature
nodes,

The cylindrical and spherical equations are presented for centrip-
ctal heat flow and surface recession. Two simple methods of converting
the centripetal equations to the centrifugal form for applications to
structures such as blast tubes, rocket motor combustion chambers,
and nozzles are discussed. These two methods involve making a minor
number of sign changes in the centripetal heat-flow equations.

Attractive features of the ablation-conduction method described in
this report are the negligible increase in required computer time over
a nonreceding case when all other parameters are identical. Secondly,
the nonshifting temperature grid prevents confusion in interpreting
computer results and readily lends itself to automatic plotting techniques.
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SYMBOLS

Area,

Angle in radians.

“olid angle in steradians.

Jimensionless modulus (kAtz)
pcT

Radius of cylindrical or spherical section.

Distance from outer surface of cylindrical or spherical
section to temperature point n (includes thickness of ablation 3

into T layer, a).

Time increment for computation.
Temperature.

Thermal conductivity of material.
Specific heat of material,

Density of material.

Incremental thickness for each material.

Net heat flux at boundary.

Summation of ablation into any one T (0 S a = 1), E(éAt).

Length of cylinder (unity).

Ablation or recession rate.

R —ETZ .

Symbol notation defined after each use.

Material thickness.

Subscripts and Superscripts

bs

Material "A. "
Material "B."
Material "C. "
Backside or internal surface.

External surface,
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- Internal surfacc.
- Conditions existing after the lapse of one At.
- Nodal point.

- Melt condition,
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Section !, INTRODUCTION

With the continuing use of rel‘able ablating reinforced plastics and
subliming materials for efficient, economical, thermal protection of
missile airframes and components, an accurate simple solution to
prcblems of transient heat flow in solids experiencing a variable sur-
face recession rate at one surface is required. This solution is not
only necessary for flat plates but also for cylinders and spheres.
General analytical solutions for structures undergoing surface reces-
sion are not available, and exact solutions are known only for special
flat-plate cases.

The analysis of small hemispherically tipped vehicles can be more
accurately calculated by a spherical program than z flat plate. Often
many small semicylindrical leading edges, blast tubes, motor cases,
and nozzles can better be assessed by a cylindrical procedure than by
a flat-plate procedure.

A large majority of the materials used for thcrmal protection of
supersonic missiles possess a very low thermal diffusivity. As a
result one-dimensional heat flow in flat plates and radial heat flow in
cylinders and spheres are sufficiently accurate even though the heat
input usually varies along the exposed surface.

A numerical finite-difference method for heat flow before, during,
and after surface rccession on flat plates, cylinders, and spheres is
described in this report. The equations derived for cylinders and
spheres are for centripetal surface recession; however, two simple
methods of using the same equations for centrifugal surface recession
are discussed.

A brief comparison of calculated temperature distributions with
exact results is discussed for special, ablating flat-plate cases. In
addition to the criteria affecting the accuracy of finite-difference
results for a piate with no recession, the accuracy of the numerical
calculations for surface recession depends quite heavily on the judicious
selection of the incremental node thickness and calculation time incre-
ment in terms of the actual surface recession rate.

The advantages of the ablation- conduction method presented in this
report are the simplicity of its formulation, the versatility of the
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boundary conditions (variable recession rate, numerous material com-
binations, and variable thermal properties),* and the short computer
time required. For the same structural arrangement and identical
selef':tions of variables such as node thickness and calculaticn time
increment, a recession computation requires a negligible increase in
computer time over the nonrecession case.

/
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*Temperature dependent approximations for specific heat and
thermal conductivity,
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Section Il. HEAT CONDUCTION WITHOUT SURFACE RECESSION

1.  Transient, One-Dimensional Heat Transfer for Flat Plates

One-dimensional, flat-plate heat transfer in a homogeneous
material may be determined by solving heat balance equations at the
exposed surface, unexposed surface, interior nodes, . and interfaces.
The forward finite-difference method was used to solve the heat balance
equations. It was assumed that the incremental thickness (r} can be
selected small enough to give accurate temperature gradients between
adjacent nodes and that the incremental time (At) is small enough to
neglect any effect on regions more than one T from the node in ques-
tion. The stability criteria for the forward finite difference equations
can be found in Report No. RS-TR-65-1.1

a. Thick Material

{1) Exterior Surface. From Figure 1 the heat balance
at t1 exposed surface is

qneto " 9cond * 9stor-d

1 =2 1 (1)
where
dnet, = net heat received per unit area
(Tl -Tz)
deond = kg AT
a
1 —2

1 .
Ta (Tx - Tl) '
Astored = Pa Ca 3 A AT . :
1

The area, A, is uniform for one-dimensional, flat-plate heat transfer.
Rewriting Equation (1) we have
]
- — Ty -T = Cn — LS S 1

Aneto T, ( 1 7-) Pa Ca 2’ At (2)

1U. S. Army Missile Command, Redstone Arsenal, Alabama,
SOLUTION OF TRANSIENT HEAT TRANSFER PROBLEMS FOR FLAT
PLATES, CYLINDERS, AND SPHERES BY FINITE-DIFFERENCE /
METHODS by W. G. Burleson and R. Eppes, Jr., 15 March 1965,
Report No. RS-TR-65-1 (Unclassified Report) AD 461 662.
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or
T, = Ty + 28, (T T)+2qnet° - (3)
| ! ! a "2 ! PacCaTa
where
: .. - k, At
' & pacy Tyt

{ (2) Interior Node. The energy balance at any interior
point n of a homogeneous wall (Figure 1) may be written

. 9cond t 9cond = 9stored
| n-1—=n nt1—n n (4)

or
k K (Tn - Tp)
a a n” +n
'.'r';' (Tn-l - Tn) +’.,_.'; (Tn+1 - Tn) =PacaTa —at (5)
Solving for T;, with
6 - k, At
ar Pa Ca Ta®
Th = Tn(l - 2Ba) + Ba (Tn-1 + Tan) - (6)

(3) Backside Surface. The energy balance at the backside
surface (Figure 1), Ty, may be written as

et R

9cond ~ 9net; © 9stored
bs-1—+bs bs (7)
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k., T (Tb - Tb)
a a s s
’.,'.; (Tbs—l - Tbs) - 9net; = Pa Ca—z— ——Kt—"" (8)
Rearrange and solve for Tpg with
1 kg At
5 Pa = PaCa Ta’
,"‘ 1 2 At
i Tps = Ths + 2B, (Tbs-—l - Tbs) - 9net; Pa o Ta (9)
b. Thick-Thick Material
‘:'.
? At the interface between material "A" and "B" (Tn,
E Figure 2), the energy balance is
¥ g gy
: 9cond * 9cond © Ystored
4 n-1~~n n+il—-n n AR
? or
Fit
4 kg kp
3 ™ (Tn-1 - Tn) +'1:—b (Tntr - Tn) )
'
,‘ T T (Tn - Tn)
3 (Pa. Ca5" +PbCb -é-) - (11)
:
Ln; Moterlal Materiol t
13 A 8 4
3 - -
t T T LT
Th-2 Ta-1 I Tn 1 Tht | Tt
1 | SR S B g
1 ! '
3 1 ] 1 i
4 LT PR SR .
2 ta b 2
Figure 2.
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Rearrange and solve for T;l

;

A,

% , 2 k, At

Tp=T +('r--'r)

: n n n-1 n Ta(Pa Ca Ta + Pb Cb"'b)

2 k, At

b
+ (Tots - Tn) N TR (12)

o e
Kol e 3

b

c. Thin-Thick Material

- o

At the exposed surface (Figure 3) the energy balance for
the thermally thin-thermally thick interface is

o e R E

; clneto * 9cond = 9stored
3 2~y 1 (13)
or
3 kp b (T; -Ty) :
, qneto+fr-t')' (Tz- T1)= (pa Cy Ta+pbcb7) X . (14)
Rearrange and solve for T
o Qnet,, At kp At T, - T
(Pa Ca Ta ¥ Pb Chb 7__) b(Pa Ca Ta *Pb CbT) (15)
Material Material
A B
Thin Skin
- o

R T AN

Ly

T

q""o —
T,
4]1",!.% e

Figure 3.
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d. Thick-Thin Material

The energy balance at the backside surface (Figure 4),
Tygs» may be written as

9cond ~ Ynet; ¥ 9stored

bs-1—bs bs (16)
or
k, Ta (T'bs - Tbs)
EX (Tbs-l - Tbs) - 9net; = (Pa Ca3" tPbThb Tb) At
' (17)
Rearrange and solve for Tias .
' i ky At (Tbs-l - Tbs)
Tps = Tps + Ta
Ta (Pa a3 *PbCb Tb)
Qnet; At
- . (18)

Ta
(pa Ca 3 tPpCh Tb)

Thick- Thin- Thick Material

[¢]

At the interface between material "A" and "C" (T,
Figure 5), the energy balance for the thermally thin material "B" is

dcond t 9cond = 9stored
n-1--n n+1—n n (19)
or

k, k
’.;z‘ (Tn-l - Tn) + —TE (Tn+1 - Tn) = (Pa Ca"il,_:3

1
TC (Tn - Tn)'
+PpCp Th +Pc cc?) T (20)
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Rcarrange and solve for T;l

TL= ky At (Tpy - Tn)

Tn+ Ta Tc
Ta Pa Ca‘-z—" + Ph Ch b + Pe CC—Z—

ke At (Tngy - Tn)

¥ Ta TC
Te|\Pa a3 +Pp Cp Th * Pc Cc 3

2,  Transient, Radial Heat Transfer for Cylinders

a. Thick Material

(21)

(1) Exterior Surface. Consider a cylindrical segment

heated as shown in Figure 6. From the energy balance at the peripheral

surface

Qin A1 - 9out A2 = dgtored H3

1—= 2 1
where
9in = dnety? A1 = ROL
Ka Ta
Qout = (Tl -TZ) y Az = (R - —2") oL
1 —2 a

]
Tz ('I‘1 - Tl) Ta
Astored = Pa a3 T Ap A, =|R-—] 6L

or

Let

(22)

(23)
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Figure 6.
rearrange; and solve for T
{ R - 22
dneto R At T2
% T; = Tl 4 Ta ° .. Ta - Zpa ——'—Ta_— (Tl - Tz)‘ (24)
Pl
%
(2) Interior Node. The energy balance at any interior
i point n of a homogeneous wall (Figure 6) may be written
dcond A1 + dcond Az = Qstored A3
n-1-+n n+i--n n (25)
’ where
§ A =|R “2) oL
g 1= -ZTH * —2—
Ap = R-ZTn-—Z— oL
A; = (R —E’Tn) oL

or
{ T k

T
a

a a a
oL — (R >t + ) (T - Tn) +OL = | R S ta- 5 ('rn+,- Tn)

o

4}

(T:: - Tp)

= OL{R 'ZTn PacaTa — o ° (26)

10
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Let

ko At
Ba =Tc T2 '
a‘a’'a

N - .
BT

1
rearrange; and solve for Tn

{ T

a
. R-Dn+g
Ta
R-)Tn-5 .
A (Tnt: - Tn) (27)

(3) Backside Surface. The energy balance at the back-
side surface (Figure 6), Tpg, may be written as

dcond A1 - 9net; £2 = Astored A3

bs-1—bs : bs (28)
where

. ka Ta

dcond A1 =T_a (Tbs-l - Tbs) R "Z Tbs T35} OL

bs-1—bs

A,

qneti

'
Ta (Tbs - Tbs) Z Ta
qstored A3 = pa a-é— At - R - Tbs + '—4" oL
bs

or ¢

k

a Ta :
oL - (R E Ths * 5 ) (Tbs-1 - Tbs) - OL anet; (R 2, "'bs)
a

Ta Ta (Ti)s - Tbs)
= 8L Pa Ca'z— (R -ZTbs'}'T) -——-——-AT——-o (29)

Let §
ky At

a op. 2
PaCaTa

11
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rearrange; and solve for T

Ta
, R -Z Tbhs + —2-
Tps = Ths t 2Pa 7o § (Tbs-1 - Tbs)
R -ETbs +‘Z"'
2At R 'ZTbs
" Qnet. T * (30)

PaCh T a
1Va ~a ‘a R_szS+T

b. Thick-Thick Material

At the interface between material "A" and "B" (T,
Figure 7), the energy balance is

9cond Al * Acond Az © dstored O3

n-l-—-n . n+1—-n n ' (31)
where
kg Ta
9eond M =:—a. (Tn-l - Tn) R 'ZTn 5 oL
n-1--n
kp b
Geond Az =7 (Tn+1 - Tn) (R > 7o - 7) oL
n+1—n

n
1
79 gy ey 2 (Ta- Ta) o/
n-3/) Pb7 At

Ta Ta
9stored A3 = [(R 'Z"'n + T) Pa a3
: (R 3

or

(32)

12
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Figure 7.

Solving for Ty,

Ta

, 2 k, At (R an +-2 (Tn.1 ; Tn)

Tn = Tn + Ta Tb
Ta<R -E'rn + T) Pa €3 Ta +(R Z'rn e )Pb Ch Th

b
2 kb At R 'ZTn - T '(Tn.i.l - Tn)

Ta C b

Th (R -Z‘rn + T) Pa Ca Ta +(R -E-rn - —4)pb Ch Th

~

¥ ©(33)

¢. Thin-Thick Material

At the exposed surface (Figure 8) the energy balance for
the thermally thin-thermally thick interface is

9net, M* 9cond Az 7 9stored A3
21 1 (34)

where

b Th
dcond A2 T (Tz -Thij |IR - 75 - 5] 6L
1 b
z —
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L oy

Mataerial
o o e
Thin Skin : ..

Ta
stored A3 =|Pa €53 To |R - _)

2
1
T T !
b b)| (1) - )
+pbcb—2"<R—Ta-—4—) T oL
or
k T
b b
OL R qpep_ + 9L—1-_-l; (R - Ty - -—2—) (T2 -T1)
Ta
= GL Pa Ca Ta R - ‘E—
T T !
b b\| (1) -7
+Pbcb"2—'(R'Ta"T> —_’.A_t__.l.)_ . (35)
Rearrange and solve for T;
' Gnet,, At R
T) Tl + Ta Tb Tb
. lpaca Ta -3 )t Pbcb R-Ta-"‘}—>
b
kp At (R - Ta - —2—) (Tz -Tl)
. 3’
S e e ps oy s I
[PaCaTa\R- ) *Ppopy \R-Ty - =

14
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d. Thick-Thin Material

The energy balance at the backside surface (Figure 9),
Tyg» May be written as

9cond Ar - qnet-1 Az = Qg0red As
bs-1—bs bs (37)
where
ky Ta
9cond M1 =T (Tbs—l - Tbs) R ‘ZTbs +'—2" oL
bs-1—bs a

9net; Az = Qpey; (R -ETBS - Tb) oL

Ta Ta
Astored A3 7 |Pa Ca " R ‘:E Ths +T

bs
|
2 : b (Tbs - Tbs)
+ PpCh Th (R -) Thg -7)]—T 6L

-

Materlal
A

Malerigl

B
Thin Skin

Figure 9.
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¥ Py

4 f . f

| 2

j ‘ ¢ or

3 L4 K

- i a Ta

i g oL T (R "E :Tbs + '?) (Tbs-l - Tbs) - 0L qpet; (R -2 Ths - "'b)
E ; a

- . ? Ta Ta
- y - 6L Paa R-E Tbs+T

3 7

. ) * 1

| ~' AR S | L T

L N pb b b bs 2 At

L . (38)

§
, Rearrange and solve for T g

5 o

E . ky At (R ) Tbst ‘Z_) (Tbs-l - Tbs>

: Ths ~ Tps + Ta T Tg Th
Talpa CaT(R -E Ths +T)+Pb h Tb(R -E Tbs-—Z-)J

E dnetj At \R ’E"'bs - Tb ,
. ) Ta : . Ta Y|
- . Pa Ca™5” (R '2 :Tbs + 'Z") Py Th (R '§ :Tbs - T) ,
n (39)
E ¢. Thick-Thin-Thick Material
. . At the interface between material "A" and "C" (T,

Figure 10}, the cnergy balance for the thermally thin material "B" is

Qcond A1 1 Acond A2 = 9stored M3

n-1—"n nt1—-n n (40)
: where

] . ]

kL - a a

b 9cond M = '_F"' (Tn-l - Tn) R .Z-rn,u_z._) oL

- n-1—n a
g . )

. §1 C c

9cond A2 = T (Tn+1 - Tn)(R -an- Tp - 7) oL

n+i—n
| Ta Ta Th
i?;: Qstored A3 = |Pa Ca > (R ’ZTn + —Z-) + pPh ChH Th (R -Z-rn- —2-)
: n

A‘ ]

TC TC (rlwn - Tn)
creec fpEee )| B

16



Material
A

Material 8
Thin Skin

Material C

Figure 10,
or
OL% R-Vrn«u%a (Tn_l-Tn)+0L% R-Z-rn--rb“-%c- ('1‘n+1- Tn)
oL pacajz— R-Y 7ot If *PpCh T Rsz"})
*Pe C¢ ;rés R 'ZTn = Tb - -T:ls } (T;]A-tTn ) (41)

1
Rearrange and solve for Ty

T,

. ka Ot (R 2 Tn +-23) (Ta-: - Tn)
n n Ta fa Th TC Tc .

Pacay (R -Zrn OT}bpb <y faR -E-rn - —5-) +Pe cc-z- (R -E Th= T~ T)‘

Te
) 7 ke at (R ‘z Tn=- Th - “l") (Tnn - T,,)
Ta Ta T Te ‘rc ] *
T, lpa a v (R ET“' T)v Py cbrb(R -z f:l-T) tPete 5 (R -Zrn - rb-TH

(42)

Ta
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?i 3.  Transient, Radial Heat Transfer for Spheres
4
a., Thick Material
»* (1) External Surface. Consider a spherical segmentheated
| as showninFigure 11, From the energy balance at the peripheral surface
z dnet 1 - 9cond A2 = 9stored 43
i ° 1—2 1 (43)
7 where
2
' Qpet A1 = Unet, R™ ¢
° k T\ T 2
a a a
i dcond A2 N (TI'TZ) (R-T) +1—} ¢
1 —~2 )
Ta (T{ - Ty Ta) , Ta®
9stored A3 = Pa Ca 3 At R-7") t33 ¢
1
or
2
T.\2 T
a a a
R? - - = +-—]— (TI‘TZ)
¢ qneto ¢ {( 2 ) 1 a
2 ]
Ta\? Ta Ta ng - Tl_) .
=¢ |IR - T + T Pa €a 3~ At (44)
(The average areaterms are derived in detail in Report No. RS- TR-65-1. )%
Tnet,

Figure 11.

2Burleson and Eppes, loc. cit.
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Let
k, At

Ba= ot
pacaTa

t
rearrange; and solve for T,

' 9neto Rz At
Ty =T +7 Ta\e Taz Ta
(EEEESS
[ R
- 2B, S Ta\2 Taz2
P72

(2) Interior Node.

dcond A1+ 9cond A2 = Qstored 43

or

X n-1—n n+l1—n n
where )
ky
dcond A1 =T (Tn-l - Tn)
n-1—n a
9cond A2 (Tn+1 Tn) (R 'E :T
nt+i—n L

The energy balance at any interior
point n of a homogeneous wall (Figure 11) may be written

1%
£

(45)

(46)

V maen

- e i

. (47)
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Let
k, At

Pa Ca Ta®

Ba

1
rearrange; and solve for T

Ta 2 'raZ
. (R'Z;Tn*"z") ‘T2
Tn = Tn + ﬁa 2 Taz ('Tn_l - Tn)

Ta\}  Ta® .

} - - — ————
. Fprm-3) + 5 , s
+ pa £ Ta2 - ( )
R -E "'u) +—1-2- :

(3) Backside Surface. The encrgy balance at the backside
surface (Figure 11), T4, may be written as

deond A1 - Anet; A2 - Ustored B3

bs-1--bs§ bs (49)
where
ka Ta 2 TaZ
Seond A1 <72 (The-s - TbQRR 2. *-z-) g | ¢
a
bs-1—+bs

qnet-l Az = qneti [(R 'ZTbs)z] 4’

t
Ta (Tbs - Tbs) Ta\? Ta?
Ustored A2 = Paay T (R 2.5t T) |0
bs

or

a
Ta)z Tal? Ta (Tbs - Tbs)
* [(R 2t tag| pacay gt (50
Let
k, At
Ba 2
Pa CaTa

20
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b. Thick-Thick Material

At the interface between material "A'" and "B" (T,
Figure 12), the energy balance is

9cond A1 * 9cond A2 = Astored A3

n-1--n n+l—-n n (52)
where
ka Ta 2 'raZ
9¢ond Ay =;—;(Tn_1 - Tn) [(R -E Tn + 2) +—l— ¢
n-l1—n
kp Thb\? Tb?
9eond #2 = T (Tn+1 - Tn)[(R ZTn - —2-) 12 ¢
n+i—n

Ta ‘raZ 'ra
dstored #3 = ¢ [(R ZTn ¥ 4 ¥ 38| Pa a7
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Figure 12.

Rearrange and solve for T;1

Ta)?
ka At (R ..2 :-,-n+.__) +__. (Tn- - )
T! =Ty + 2 12
=lp Ta\z Taz :  Th Tb
&3 *a?] Paca ¢ [[R o '“) ' 48] Pb°b?}

Th\2 Th?
ky At (R -E Tn - —-Z-) + 1z (Tnﬂ - Tn)
Ta\: Taz Ta | Tby2 The
(r 2o+ +Ts] Pacag * [(“ 2 T)

T

a

+
Tb{

c¢. Thin-Thick Material

b
Pb Cb'z—;

(54)

At the exposed surface (Figure 13) the energy balance
for the thermally thin-thermally thick interface (Tj) is

q A + q

netg 3 =9

stored A3
2—1 1 (55)

cond A?-




LY = S

B el el

TR S A

Material

Figure 13.

where
2
dneto A1 = 9net, R4
kb T
9cond Az = (Tz -T1) (R = Tg - 2
21
( Ta\? Ta?
dgtored A2 ={Pa Ca Ta |\R - —?__> 1z
1

or

ky, T\ 2 TH? ( )
¢RZQneto+¢;'g [(R 'Ta"'z—) oz \Te - T

Taz TaZ
=¢ YPa Ca Ta (R-"é—) +~i"§-

Th TH\ ?
tepep5 [(R-Ta-7) *

(56)
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A
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g% Rearrange and solve for T,
41 2
& T;= TX* . q,,c¢0 At R

L . gpa ¢a Ta [(R l:_-‘)‘ "*TQ;] ' e Cb_‘_’KR o :b)?Q%%z]}-
B St e
% Tb{PaCaTa[( "Z‘l)a*—]”’b“bz [(R-‘r -—) &J}

d. Thick-Thin Material

The energy balance at the backside surface (Figure 14),
Tpg» 2y be written as

dcond M1 - qnet Az = Qgrored A3

¥
Cod

f
-
2

bs-1—+bs bs (58)
! where
.
{ k Ta\%2 T32
N + a a a
; 9cond A1 = T (Tbs-l - Tbs) [(R 'E Tps + —2—) + T] ¢
i bs-l—obs a

2
Unet; A2 = 9net; (R -2 Tbs - Tb) ¢

Ta Ta 2
9stored A3 ={Pa Ca 3~ (R Z"'bs + T) 8
bs
z Th? Tbs - Tbs
+ P CL Th RZTbs-—- —E

¥ Material
A

Materiol

~
Tnetg ~ \Thﬂsnn

Anet}

—_— G SO S W Gma G

Figure 14.




3 ka Ta Tal
3 o (R 'Z:Tbs*—)_) b2 (Tbs_l TbS) oqnot( 2rbq-rb) i

————
L
G-
i,
©
=]
oY
N-!

tPb b Th
(59)

£2U iy aniag Aik i ke

Rearrange and solve for T{)s

-raZ ‘raZ

E A ka &t |(“ 'E'b»*‘z“) ‘1z
. Ths  Tos ¢ T Tl

3 T\ mCa _,_l(R Tbb"—) ¢ ml‘pb‘b‘"b

(Tbs-x - Tbs)

F T

2

dnet, At (R E'bs - Tbs)
Ta | Ta\z Tal I b2 Tbe
ba‘a gy I(“ 2 T) B (R Drws - 3) TZI

*0h Cb Tb

yapes

e. Thick-Thin- Thick Material

At the interface between "A" and "C"(T,, Figure 15},
the energy balance for the thermally thin material "B" is

"

9eond &1 * Qeond #2 ° 9510red 8

n-i1—-n nt+li—n n (61)
where

R IR (P S R

ey

A ond A ('r“ - 1,,) l(n 7, - -_,.): . Il‘.; o

ueg en

Ta
Sper.d M ’p,n fa v ‘(R E :'n
o
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Section lll. HEAT CONDUCTION DURING ABLATION

To calculate the heat transfer in a material when the exposcd
surface of the material is heated, an encrgy balance must be performed.
For this analysis the energy is considered to be either radiated away
from the exposed surface, conducted into the cooler interior of the
structure, or stored in the material near the exposed surface. If
sufficient encrgy is stored at the surface, the surface temperature will
eventually reach a critical value. This value is usually known as an
ablating, melting, or subliming temperature (Tm). In this repert it
is assumed that the ablating temperature T is known or calculable,
and this temperature remains constant while ablation is in process,.
Another basic parameter required once the exposed surface has reached
the ablation temperature, Ty,, is the recession rate (ablation rate) or
the rate of material removal. It is assumed that the ablation rate (a)
is known or can be calculated for any given increment of time, but may
change as a function of time.

It is also assumed that once the exposed surface reaches the melt
temperature (Ty,), the recession rate governs the amount of material
removed. The material properties of specific heat (C) and thermal
conductivity (k) may all be a function of temperature.* The pyrolysis
of the material leaving the heated surface of the slab has been left out
intentionally because of the complexity of the problem. However, this
parameter can be included in the heat balance, if desired.

Figure 16 shows the temperature grid arrangement for a slab
undergoing surface recession. Nodal points T; through Tn do not
change or shift positions while ablation is occurring between the orig-
inal nodal points T; and T,. When the ablation front or receding front
reaches or passes T;, the T, nodal point temperaturc assumes the
value of Ty, and T;; is calculated in the same manner as was Té when
the receding surface was between nodal points T; and T;. Once the
ablation front reaches a nodal point, the ablation distance 'a'" is reduced
by the value of T3 (0= a < T3), and the process starts over again.

Let us first assume that T; and T; take on a constant value Ty
for all times during ablation, The primed or future values for all
T's (T3 through Tp in Figure 16) can be obtained by ordinary forward
finite-difference methods since each oi these nodal points is a full T4

*Temperature dependent approximations for specific heat and
thermal conductivity,
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from the two adjacent nodal points. Thus only the future temperature v
at one nodal point (T,) is not defined. Examination of the geometry
for the ablation case shown in Figure 16 in light of the pure conduction
condition described in Figure 1 reveals that two basic conditions must
be considered for the ablation-conduction case., One case is for

Ta
— < as< Ta.
2 a .

Ta
0<a=s > and the other is for

The energy balance for the T; nodal point using forward finite-
diffecrence approximations for a slab is as follows when "a" is equal

.y

Ta i
to or less than 3 -
X
v
K
8, _ 1
]
'—- - -
et __,T,‘ Tm T } Ts Ta To-1 T,
|
. 1 !
o J

]
Note: Tz T =Tp during ablotion.
Figure 16.

]

T
. . . a
Recession condition 05 a=< >

UGn A - Qout A “9stored A
1— 2 2— 3 2 (64)

where A 1s unit area, or

k

kg a
(Tm - Tz) + :r: (Ts - Tz) T PacCaTa

Ta"a

At

(65)
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Let

Pa

Pa Ca Ta®

'
rearrange; and solve for T,

T, = T, + Ba (E%) (Tm - Tz) + Ba (T3 - Tz) . (66)

T
This equation is valid for 0 €a < 73 . When "a" = 0, Equation (56)

reduces to an interior node equation having the form of Equation (6)
for the pure conduction condition with Tyyy = Ty. When "a' = % ,
Equation (66) is unstable for g > 4.

For the case where % < a= T4, the reduced storage associated
with nodal point 2 must be considered. The energy balance for the
T nodal point using forward finite differences becomes

An A - %out A= 9stored A
1 -2 2 —3 2 (67)

where A is unit area, or

ka y, ka
F S - _— - T
'ra-) (m T‘/+Ta (T3 2)
sra )\ oh- 1)
=pacalz -3 A (68)
Let
k, At
ﬂa = ’

. 2
Pa €a Ta

1
rearrange; and solve for T,

Z -
Ty = Ty b Ba— (ng.,:z) + Ba 3———T: 2 (Ts - T2)  (69)
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Equation (69) is discontinuous or unstable at "a" = 13, regardless
of the value of B. This instability would bring about problems each
time "a'"- T4 and nodal points are removed.

To eliminate the stability problems associated with Equations (66)
and (69), an investigation was made of a backward finite-difference
approximation for T; when ablation is in process. The backward
finite-difference approximation is accomplished by priming ail tem-
perature values to the left of the equal sign in Equations (65) and {68).
This is possible since the surface temperature, Ty, is known, and
all other temperatures beyond T, are easily obtained by standard
forward-difference techniques. Two resulting equations in terms of
T, are obtained in relation to the position of the receding surface.

. ey Ta
Recession condition 0 = a =< 5

k k
a V! _a ' I)
(T - T ) Ta
=paCaTa—iAt—'z'-‘, 0Osas (70)
or letting
5. - k, At
® pacaTal
and solving for Té
Ta - a Ta - a
, ﬁaTmef’a( p ) T3l+Tz(—"T—' T,
T; = = a 0<as— (71)
2 Ta - a Tgq ~ A ’ 2
Ba t Ba ) t—
a a
Recession condition% < asTa
k k
a t a ' ]
(E‘_——a) (Tm - TZ) +;‘a' (T3 - Tz)
3Ta (Té -T2> Ta
“Pacalz -ty 7 e
(72)
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or letting

e A
SE o

) k., At
< a
1 pa ) 2

- F)
PafaTa

2 and solving for T;
g' 3Ty
g‘ Ta - . 2 - 9(73. = a)
Ba T + Bal——) T3+ T: 5
Tl - TL Ta
2 371, )
ra-a) (22 (a9
Ba ¥ pa( Ty )+ Ta®
Ta
S-<as Ty . (73)

It can readily be seen that Equations (71) and (73) are continuous

for all values of '"a'" (0 £ a = T3) and arec a marked improvement over
Equations (66) and (69).

A mid finite-difference approximation was also investigated for
finding T;. This mid-difference method is a better approximation to
the cxact solution than the backward finite-difference approach. How-
ever, the additional complexity of the equations and computer storage

requirements were considered unwarranted for the additional accuracy
gained.

Anocther ablation-conduction .pproach that has been used success-
fully is the "shift"” mcthod shown in Figure 17. An interpolation
routine is used with known temperatures Ty, T, T3, and T, to get
T3 and T3 located at even increments of T35 from Ty, The g'cncral
forward finite-difference interior equation is used to get T3, i.c.,

Ti, T3, and T3 are used to get T3. Nodal points T3 through T, are
calculated using the ordinary forward finite-differen«e ecquations and
original temperature node locations. With the prime temperatures
known (T, T3, T3), it is possible to use a three-point intc rpolation
routine to find T3 located at a distance of one Ta in front of nodal point

. T3 and T, - a distance from the receding surface, This "shift"
method can be used accurately until the receding surface becomes
closer than two t3's from the unheated surface. At this time other
special equations must be utilized.
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After consideration of the advantages and disadvantages of the
three approaches discussed, it was decided to pursue the backward
finite~-difference method in deriving the energy balance cquations (T3)
during ablation for one-dimensional flat plates and radial conduction
in cylinders and spheres.

The finite-difference equations presented in this report for finding
the temperature profile near the receding surface are limited to the
condition of 0 < a < T;. However, as the receding front passes succes-
sive originally selected temperature nodes, the equations as derived
are applicable if appropriate temperature subscripts are used. For
example, when the receding front is between the original location of
T, and T3 (Figure 16) on a semi-infinite slab, either Equation (76) or

(79) is used to find T3 by increasing all temperature subscripts by
one.

iy N S L TP PR AL TP WL ) e B o TN P A
Gl tal 4 Aty Rk WA g g8, oAb, e oy o faoreace o -
e o e ) S .
e ke e ——— ———————— o 4

'
‘

1.  Flat Plate

The procedure for calculating heat flow during surface reces-
sion is described for all expected material combinations with the
general thick equations being a repeat of Equations (70) through (74).

a. General Thick with 65 > T4 (Figure 16)

T
(1) 0 =as _Z_a . The energy balance for T, is

9in - Y9out = 9stored (74)
1—=2 2-+3 2
or
Ka ! ka ' ' (Té - Tz) ‘
-(?;——2{) (Tm - TZ) + -_-r—; (T3 - T2> =p,yCy Ty AT © {75)
Letting
. k, At
a pacy Tyt

and solving for T;,
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% T, - a T, ~ a
o« a ] a
Lo . ﬁa Tm + ﬁa( Ta ) T34+ T, ( Ta ) ;

: Tz = 5 'ra-a) Ta - @ : (76) .

' + . 4

b, Pa * Ba

¥ ( Ta Ta j
.
‘ é‘ Ta . '

%l {2) > < as Ta. The energy balance for T; is K
.

’

9in ~ 9out © 9stored
1—2 2—+3 2 (77)

'W‘

MR S

or

B e

” w!:
=
o
—
-3
3
1
=
~ -
~—
-+
IW’
[\

1 1 3Ta (T; - TZ)
(T3 - Tz) = Pa Ca ’—"2 ~ ‘—"—"—"At .

1 T,-a Ta ;
a (78) :
‘ Letting %
g ) ka At f
§ 2" pacaTa?
i, and solving for Tz,
$ 3T,
i Ta-a) | (2 ')(Ta’a)
{ _ Pa Tm + Ba T T3 + Te )
§ T, = 3T - (19)
; Ty - (—-—Za - a) (Ta = a)
‘ Ba + B; +
a « Ta 'l'a_Z H

o s g

It should be noted in Equation (79)that, as "a" approaches Tas T,
takes on the value of T,,. This is true under actual conditions since
the nodal point T; is moving, and all the other nodal points are fixed.
|, - As the ablation front reaches the original interior nodal points, these
nodes take on a temperature value of Tpy,.

e o e,

As long as the remaining wall thickness of the material undergoing
recession is equal to one or more than one 1, the interior and interface
equations presented in Section II are used to solve the heat balances
throughout the structure away from the receding surfaces.
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b. Special Thick with 6, < Ta (Receding Surface < Distance
T, from Backside, Figure 18)

When the receding surface is less than one incremental
Ta from another material surface or the backside of material "A,"
special consideration must be made for all boundaries normally
experienced.

Figure 18.

T
(1) 0<sacs —Zé . The energy balance for T, is

9cond ~ 9netj © Istored

1—2 2 (80)
or
k T ('r' - T )
a ' _ _a 2 2
T, - a (Tm - Tz) - 9net; * Pa a3 At (81)
Letting
- k, At
27 Py ca Ta?

and solving for T;,

2 . At -a
T, - a Unet; (Ta )
ITI.
Ty = Pa Tm * Ta ) T Pa Ca Ta Ta

2 -

Ta - @ ’ (82)
2B, +

Ta
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(2) ?a < a £ Ta. The cnergy balance for T is
9%ond - nety Ustored
1 =2 2 (83)
or
|3 . -a '
a ' i a Ty, - T
[ra - ) (Tm - Tz)" Unet; - Pa Ca( ) ) At (84)
Letting
k, At
Pa - Pa Ca Ta?
and solving for T; )
2 2 . T, - a
Ta - a 9netj a -
, 2PaTm* (—‘) T2 - Facata o ( )
T: s L (85)

Zpa+(1’a )l

c. Special Thick-Thin with 63 < Ta (Figure 19)

3¢ —»

| N

Ta ——'—'—""‘l‘bv"—'

Figure 19.
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T
(1) 0saxs -——29- » The energy talance for T; is

9cond - 9netj © 9stored (86)
1 -2 2

or

' A Ta
.(Ta - a) (Tm - Tz) = 9net; © \Pa a3

(T'z - Tz) ) (87)

Pb b Tb) AL

b

1]
Solving for T,,

T K, at Tyt 4 Gnct, At T, e
ns T + T, .
a Ta Ta Ta
Ta p-l'.l".' ‘PhchTh IPa a3 " O Sy ’bl

Ky At , Ja-a
nlpa ".;’;_2 'Pb‘b"bl Ta (_88)
Ta
(2) 3 <asTa. The energy balance is
9cond - 9neti © 9stored (89)
L2 2

or

T
+ Py Cp Tb) “—r- . (90)

Solving for T2

Ty khy &t [xa-a Uneq, &Y Th - A
Ta-a ¢ T*\'—f‘, - T, - A T
TaPa Ca=“3== $PhCH T lpa‘a' 7Tt PLLTY a

T,
k, at Ta- A
Ta -~ 3 ' L
TafPaCa—7 * Pbth Th
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d. Special Thick-Thivk With d, < 1y »(I"i;.',un- 20)

8a —»
Material e Maierial
A 8
- - /
|
: Tm To & T3 h
I z
g
e T iat Ty —>
Figure 20.

T
(1) 0<axsx _?a . The energy balance is

9cond ¥ 9cond © 9stored

1 —~ 2 32 2 (92)
or
k k
a 3 b | .
S LA
Ta ™\ (T - Tz) ,
. = <pa Ca—z— + pb Cb ‘2") At_ (93)

Rearranging and solving for T2,

s (2
T ka A\ , T' b At Ta T Ta - @
o o caZ® 4 pp e Tb] ’ [ 3 T Ta .
. alPacaz *PbCL; Th{Pa Ca 3 t Pb b5 i
Ta - a
k, At ky At Ta Ta - a
Ta ™ ' T I
TafPac€a 1 Pb by Th[Paay ' PLLTT “

(94)
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4 : f‘g T
A . (2) Ta < a £Ta. The energy balance is
R
3 t 9%ond * Ycond  9dstored (95)
. 1 ~2 32 2
' or
3 ka ( ' kb (
“ ———— Tm'T)"}"‘"‘ T;‘Té)= pa Ca (Ta'
| T, - a 2 T, \
1 To| (T:- T
4 + S . 6
Pb b AL (96)
L Solving for T,,
$ Ta~a
: ] 1 m’kl at kb A‘( - T ) T (74 ° “)
D B :‘ ‘9 T ‘ ————
? e fa[‘n‘d (".—.-a ‘ﬂb\b ;’I lna Ca(fx'ﬂ)‘ﬁbcb—] , Te
2. ——— —— - .
T, ~ o
kot . ky A"( a-ra ) Ty~ @
S 7 '
3 BP0 IS R P S e B
g Heat flow in the sccond thick layer .s determin®¢ from those cqua-
tions presented in Section II for a nonrecession case.
“ ¢. Special Thick-Thin-Thick with §, = 7, (Figure 21).
f— Material
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Figure 21.
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(1) 0 cas—==. The cnergy balance is
'
9¢ond * 9cond - 9stored

1—=2 J—2

or

ka

t pe Cc 3

t
Solvang for T,,

Faoa) (e T

2 {98)

kC ] 1 Ta
T"—c (T3 - T;_): [pa Ca—z— t Pp Ch Ty

Tl (T;- T,
| finl -

lIll k.lAl
__F._-T JEpI—

Ta RIS PuL Ty

LTI

7 - a
T: ¢ At \ ) T, -a
‘ o ¢ T, -

T _"a‘-‘l? YPh LTyt P ‘¢ 7|

rog
N

. Tl'd
ke At 3

Ta
Talrota s Ty

Ta

L S
T( Td f(‘ * T.
et ) TfPafas CPh L TL Pt T ’

(100)

(2) 5 <a=T,. The encrgy balance is

2

qcond 9eond *
1~ 2 3 —2

or

9stored

2 (101)

k k
a , c

_('r "‘_‘g) (Tm - I';_) +2 (Ts' - Té) = [Pa Ca (Ta - a)
a c

tPbChThbtPcCcS

. ]
Solving for T;,

(102)

Tc (j:_.;. - Tz)_
At

)

—
Ty, K, At Ty ke at | =252 (Fa-a
7o) ! T T‘\
T ’a[f‘ Cla (".1 "‘) TPLLL TH P C¢ _l_l Tc ["‘n Ca ("a - "‘) Y P Ch Th * P C¢ “,‘]
H
{ra - A
_ ka At ke &t "‘ﬁ.“' -, -

(103)
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Heat flow in the second thick iayer is determined from those equa-
tions presented in Section II for a nonrecession case.

2. Cylinder Ablatior - Conduction

The energy balance for the radial heat flow toward the center-
line in a cylinder is basically the same as the flat-plate casze, with the
exception that average areas or changing areas are cuonu:idered for
conduction and storage. Once the aklation front rcach.s an interior
nodal point, the ablation distance "a" is reduced by ibe value of
Ta (0 = a = 713), and the finite-difference calculution process stares
over again., In addition, the radius to the original 7', »zdu! pzint is
reduced by the value T3,

a. General Thick with 63 > 14 (Figure 22)

Figure 22.

T
(1) 0= as -;- . The energy balance for T; is

9cond A+ Qong A T A5tored M2 »
1 —2 1-2 3—~2 3-2 2 (104)
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or i(
k k
a 1 a | ]
T T, A + — T, - T ) A
(Ta - 3 ( m z)x-z Ta ( 3 2 32
T, - Tg)
2 - 12
= Pac€aTa '_At A (105)

where A

S
™~
1
(o)
l
/:"§
™
o
]
ol 2
[+
I

bo=S
~
I
[eo]
c
—
=
™
-4
<

»

Letting
k, At '
a
 e——— Z =R _E: ,
pa Pz Ca Taz ’ T2

1
and solviag for T,

' 7‘
. Tz T — 4
a-a Ta
Z + 3 Z - = T - a \ 'ra - a f
‘3 + ﬁa + ‘
a Z Z Ta Ta
(106) '
(2) S < 2 < Ta. The energy balance for T; is
9cond 1‘5'2 * 9%ond 31}2= 9stored Az
1—2 32 2 (107) ;
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A, b4

L
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.

RN SEIE - e
or
k
2 (Tm-T'z) y =2 ('r;-'r;) A
(*ra a) 1-2 a 3-2
31, )(Té- Ts)
- —_— - B 108
where
Ta' a
A =OLIR -E Ty + >
1-2
T
A = 0L R-Z :Tz-"—a'
3-2
T, - 2a
Az = 0L \R -E T, + 3 .
Letting
kaAt
’ Z =R - Tz,
Ba “ e z
and solving for T2,
e iR (52 - o) (- o
Tm Ba Ya - 23 ’T’ﬂa( T ) Ta-2a] ‘T Tt
, Z 4 7 a 7+ 1 a
T Ta - a Ta 373 i
" Z v ,‘3/'3'“ Z - = \ 3 _a)(7a a)
aZ+Ta-B a\ Ta) Z¢T“-Za Tal

(109)

As long as the remaining wall thickness of the material undergoing
recession is equal to one or more thar one 7, the interior and interface
cquations prescnted in Section Il are used to solve the heat balances
throughout the structure away from the veceding surfac.

b. Special Thick with §3 s T4 (Receding Surface s 7,4 from
Backside) (Figure 23)

T
(1) 0sacs Ta . The encrgy balance for T; is

deond & - 9net, A4 Astored A2
1— 2 172 2 (110)
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Figure 23.
or
k
a '
T, - 2 (Tm - Tz) A - dpet; Aj
Ta - T
= Pacay (—"-At 2 Ay (111)
where
PR )
A = 8L (R -E T2 +_—2——
1-2
Aj - SL(R -Z-rz)
Z Ta
Az = BL IR -} T; +T .
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Letting
ka At
s—2 __— , Z:zR-Y T2,
Pa Pa Ca Ta’ Z

and solving for Tz,

Ta-a
. 2 Z+ > ) anctiAtZ T,-a i T, - a
m “ra Ta Ta T + Ny \ =
, Z+T Z+T paca"a a a
e = a3 . (112)
Z ¢ T -2
2 a
Zpa T +
a T
Z+4 a
T

(2) -Z—a <a < Ty. The energy balance for T, is

9cond “} = 9pet; Aj = 9stored Az
1~z ' ' 2 (113)
or
“a T, - T A A
(T2 - 9) m z) N Anet; £
(r: - T4 A (114)
pa C, Ty - a At 2 .
where
T, - a
A = OL R - T2 + )
1-2 Z
Aj = OL (R -3 Tz)
T, - a
Az'—'OL R-ETz"i"—""——' .
Letting
k, At
- , Z2=R-)7 ,
Pa Pa Ca Ta’ 2

. 1
and solving for T2,
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3 q netj At T4 - Z Ty - a
3 Tm pa - < > = + Tz<
2 PacCaT T Ta a T
3 l ata'ta a 7+ 5 a (1 1 S)
« 3 Tl 2 )
Ta- 2
" *< " ) :
VO b
c¢. Special Thick-Thin with 65 = 174 (Figure 24) i
: b
;
|
LT Material %
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3 Thin Skin
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Figure 24.
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(1) 0 as —f . The energy balance for T: is

9cond A - Anet; Aj = dstored (Az * Ay)
1-2
1—2 2 (116)
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3 .
: +pb cb Tb A4] (v - 1) (117)
: At
" . where
2 % S
- A =O0L[R-) T+
; gf 1-2 2 2
} Aj - OL (R 3T
.
I ; [ Ta
, Ay - OL{R -E T2 + ——
+ 4
{
%, Tb
Ag OL{R - 'Tz - 7
Letting Z - R —Z T2 and solving for T, ,
H f, j : Ty ha ( ¢ 2“-2‘“) Inet, At (7 - "’);(I»;.;f) . (v_‘ l)
a; ) ‘: ! T; Ta [(7 * "‘:) Pa ‘a:; * (;‘ '_“:") Lty 7b] J(7 . ‘i‘l) 9.1..‘ l':‘ * (1 ?‘ oh ‘,‘, ";] T
3 1 ka At (7 * :i:,-":') Ty d
2 ! fa[(y ‘ ,;?) Pata .!.l ’(7 I;-’) 9(.‘[:".] T (118)
3 T
(2) —23 < a £T4. The energy balance for T; is
Geond &~ 9net; AP 7 Ustored (A3 + A‘)
;; 3, ka T '1"' A A- ~ c T - a) A
- z '(‘1'.';—_‘";) m " Z)l_z'qneti i “|Pa a(a 3
. ! \ ]
- T
t+ pb Cbh Th Ay (—T—%&Z———Z) (120)

where

A3 T, WA Ry bmw:wz:‘:
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Letting 2 - R - 212 and solving for T,

.;'j N . ] v A

K ' X ,,,” -‘_\I(I “.) o :-l."_‘\‘:;h)( ‘V, ) e . (' .

B R TS N Vs pom B R P e e R
:1 kg.\'(l"‘,‘) LI

¢ T SR A AR Y R

. T TR T e T

: _[ —] (121)
d. Special Thick-Thick with 6, < T4 (Figure 25)

Material
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" S Materigl
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A
H
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Figure 25,
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(1) 0=as=xs Ta . The energy balance for T; is

9cond 11}2 t Y¢ond 3sz 9stored (A3 * A4>
12 32 2
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or
“a T 'I)Alkb (1 ry) A [p A
I - L - 3= 1 a ta
(Ta - 3 m 1-2 -2 tra
T (rz - T,
t+Pb Cb 5 A.;] t ) (123)

where

A; = 0L

%
w
"
[e0]
e
e~~~
w0
™
.‘
~N
+
-.‘
|
i S

Letting Z = R -Z T2 and solving for T:o_,

2+ ko o __n.)(*a =2)
3 \ Ty kp At {Z - 5 T X Tz<~ra- .x)
T ¥ T T T, Y ¥ T
Ta [(’ t ta) Pocag ez 7 oo <o z)] "’[(Z t ‘-T‘) pacas +(z-F) ow ey 2 '

Tm ka at (7- ¢

T;
T, -2 Tp\ {Tac- A
e 250 o -3 (3)
Ta Ta Tb o] Ta Ta ., Tb . Tb ¢ Ta
raK?.é—_,-) "nch ’(z"’f)"b‘b?] 'bl(z*T)"acaT t(/.-—i-)pb(b—z- (124)
T

(2) _7a < a £T3. The energy balance for T; is

qCOhd IAZ + qcond 3“}2 = qstored (A3 + A4)

l—2 3= 2 2 (125)
or
k k

2 (T - TY) A — [T3- T A

(ra - 2 1-2 Tb 3-2
T 1
b T,-T

.:[pa Ca (‘ra - a) Az + pp b5~ Ay -(——zA-t———Z) (126)
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Letting Z = R -Z 72 and solving for T;,

! Ta®? . T Ta=a
| T ka a1 (7 ’ 53-) Ty Ky, At (Z . -.'3) (:-r—-) v, - N
M) Ty, Th Ta-a o Yo
o LN l(L D —?—z—-) Pa €alta * 2) 0(7. - T) Py b -_,-] 1,,[(2 . —9—2—) Paa ita a) c(?. - T) Ph ¢y -‘-l s
- .

Th+a T Ta=- 2
k'Al(Z' 2 ) “’m(z'?) (—'a ) tar 2

Ta l(z ':32:":) Pa Ca (Ya - l) . (7. --'I‘-')pb <b -‘2!1] ) vbl(z + Ii—;"') fa ca (u . a).(z B ‘—b-)pb tb’—}] '“‘-

s
[
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A g
N e TR TR

Heat flow in the second thick layer is determined from those
equations presented in Section II for a nonrecession case.

e. Special Thick-Thin-Thick with 6, = 75 (Figure 26)

Matenial

A ol
R .
Material ',
8 :
272 Thin Skin s
/ Matenat -
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F v \SS
T, A~

R A AR L e T

Figure 26.
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T
i (1) OSaS-Z—a.

Ko A s R N, L R

The encrgy balance for T; is

9cond 1“}2 * Qcond 3{‘2 * 9stored (A3 A AS)

! ]—s2 3—e2

— (Té - Té) A

2

3=2

= + A4 pp Cp Tp

or
k k
(Ta - a) . 1-2 Tc
T
=|A3Paca;
T
c
+ As pe e
where
Ta-a
A = 98L [R -Z'rz +
1-2 2
2ty T
A = 9L<R E-rz- b °>
3-2 2
A3 = BL {R - T2 +—4-
b
Ag= oL (R -Z'rz -2
2
Tc
A; = 6L RZTz-Tb~T .
Letting

TR a2y T WL L6 A T

(129)

T

1 a c
Z:R-E'rz, A:e—L[AS Pa a3 + A, pb €b Th + Ag P CCT] ,

v, - a 2T+ T T, - a
kﬂm(z» kcm(z- b c)(“ ) .
T t /o 2 ALEANEY | ( a a)
Tn m TaA 3 TcA 2 Ta
- T,-a 2Ty T,
kaAl(Z%“‘-‘E"' kcAl Z - 2 Ta'a Ta-a
L3 +
Ta A Tc A Ta Ta
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T
(2) 2ca € T, . The encrgy balance for T, is
2 a gy

9cond ,‘é * 9cond 3"}2 * 9stored (A3 t Ay +A5)’ (131)
1 -2 3 =2 2
or
ky ) ke
T - a (Tm - Tz) AT;‘::' (T3 - Tz) [_\2 =[A3 Pa Ca (‘ra - a)
(T; - T.)
+ A, pbCh b+ A Pe Cc ——é-] -—L—t—?‘— (132)
where
T, - a
A =0L R-E T2 +
1-2 2
2T+ 7
A =0L|R - T2 - 2
3-2 Z
Ta- a
A3=9L R -ZTZ‘*' 2
§ : b
A4= eL R - Tz-'?)
Te
A5=0L R-ZTz—Tb-T .
Letting
1
- Z=R-ZT2, A=E£[A39aca(7a‘a)+A4pbchb

Te
+ A5 Pc Cc ’E"]

1
and solving for T, ,

T -a 2ty 7 Ta = A
. a . b Tc a
e ) (e TR Ay
+ T 2 ¢ TZ( )
v Ta A 3 Te A T3
T, = Ta - a CThT¢
kaAt(z+ > )*kcm(- 2) ,a_() , Ta-a
T, A Tc A Ta Ta
(133)
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Heat flow in the second thick layer is determined from those equa-
tions presented in Section II for a nonrecession case,

3.  Sphere Ablation - Conduction

The energy balance for the radial heat flow toward the center
in a sphere is basically the same as radial heat flow in a cylinder if
the average areas are modified. Appendix A of Report No. RS-TR-
65-13 gives some of the derivations for average areas for spheres,
Once the ablation front reaches an interior nodal point, the ablation
distance "a'" is reduced by the value of T74(0 < a < Ta), and the finite-
difference calculation process starts over again. In addition, the
radius to the original T); nodal point is reduced by the value Tj;.

a. General Thick with §; > 74 (Figure 27)

Figure 27.

T
(1) 0sacs —; . The energy balance for T, is

9cond 1{\2+ 9cond 3_Az =95tored A2
1—2 3 =2 2 {134)
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or

Letting

k, At

P, C

Ba =
aTa?

and solving for T;_,

)

. ("a")

12

i ), Yrav - o g O s e =

3 - Té)

3-2

(135)

(136)

dcond A, + dcond A
-2 3-2

1—2 3—-2

)

or
ka

————a) (Tm - T

A
(Ta

1-2

< T,

ka

Ta

+

3T,

= Qgtored Az

The energy balance for T; is

(137)
2

(T;- T

A
3-2

)

< Pa Ca(

2

(17 - T.)
At Az

)

(138)
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where

1 2 2
( T, - a (Ta- a)
1§z—¢\.R-ZTZ+ 2 ¥ 12
" 2 2
Ta Ta
3ﬁ—¢LR-ZTZ-? Y17
[ ‘ra-Za 2 (31' -Za)z
A= ¢ LR - E T2 + 2 + a8 .
Letting
ka At
ﬁa =~pa Ca Ta,z s Z =R - ET?.

and solving for T:,_,

foiagt) s L (-s) faze) o)l

+ T;aa + T

T # z
. a
" ( Jac za)‘ '(;r_\ S2a) ¢ (7 a2 )‘ L Ura- 2a)¢ a T
T - 3 15 : 3 18
¢ 2 ¥ :
L,  Ta~ fra - a) ( "a) Tal 3ty )( )
8 e a)' iz , ¢-7) ‘5% raeay g -oflna-a
a 2 242 * Pa 2. \8 s ? ' ]
( T, - Za\ {37y - 2a) ( Ta 2a ) Bbr, - 23} Ta T
A | 18 A MR T

(139)

As long as the remaining wall thickness of the material undergoing
recession is equal to one or more than one 7, the interior and interface
equations presented in Section II are used to solve the heat balances
throughout the structure away from the receding surface.

b. Special Thick with 85 < T3 (Receding Surface s 73 from
Backside) (Figure 28)

Figure 28,

56




T T T TS g ERa T et e
g ST N e L LN

A e e o

.
(1) 0sas—=.

9cond xéz -

9net; Az * Agtored B3

1—2 2
or
ka T T A A
(Ta = a) m- 12 = 9netj 92
Ta (Té - Tz)
=Pacaz ATy
where .
A -(R Ta - a) (fa - 2)
= - Ta2 + +
-2 ¢ L Z 2 2 12
S

Letting

k, At

= 3
Pa Ca Ta

Ba ,  Z

and solving for T»

The cnergy balance for T, is

N N TN L
RO R Fefho v’ enyt

oy
o

(140)

(141)

i DO TN

2 2 5
Ta~ 3 (T:\") 2 Ta-a 5
YARY § —— 2 q Al T. -2 9%
T, (28a) z 12 — : IR R L £
m (%Ba |’ a2 ( P ora? Ta 4
o o) - 5 “T)’ET”““'“ :
2 T,-a 2 {ra - a) : §
Z+ 3 ¢ 12 Ta- 0 £
2
Pa ( Ta)z T, T
zeg) + 3%

Ta
— < a

(2)

< Tae«

9cond léz - 9net; A

12

ds:ored A3
2

The energy balance for T, is

(142)

(143)
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or

= PaCa (Ta - a) M (144)

where
- Ta - a 2 (Ta R a)z
1{&z=¢ (RZTZ+ 2 ) ¥ 12
A = ¢ (R -Z TZ)Z]

L
i 2
T - a T -az
Ay =¢ (R -E 1-2+——-————a2 ) +(——-———;“L12 )] .

Letting

k, At

pa=m , Z=R-E'rz ,

! and solving for Tz ,

T, - a
Q
Tnet; Ot zz( T ) - a 2
Tm pa - TZ

(e Cos
[ * 2 12 paca Ta &
" ' - (145) L

C.

Figure 29,
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(1) 0sac —;- . The energy balance for T, is

dcond 1“.\2 © ey A = Agporeq (A2t A3) s
1—2 2 (146) v
or
_._ki_. T T' A Ta
(Ta - 3) m - z)l-z— Inet; Ai = A2 P25 ?
(T2 - T2)
Ay PuCp Th| AT (147) 5
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Letting

kAt
PaCa Tal ' ZERY T,

By =

and solving for T, ,

]
2
ky & ) (Fa )z o= a
-\ t a-@a - a 2 a”~ "
{(7‘—2 ) 12 7' dnety (Z"") a7 )

‘I( ”a) Tal l [ ) l }
i Z+=} +—= PaC’l, * Pb Cb Th
T e : : kAt va-a\’ ('r - a)t (148)
Ta~ 2 . Ta [(Z * 3 /) ! 12 ]
t LI T\ Tyt :
2 {Kz%—‘l){g PACAI:?'[(Z--ZB) +-liz)]Pbefb§ !
i
. |
(2) S <asTa. The cnergy balance for T:,_ is ‘
qlcond fz " Ynet; Ai © Astored (A2 + Ay) (149)
-2 2
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+ Ajpp ch Tb] et tTZ)

where

LD

1f

B U L © 2] 1z
Letting
k, At
Bp=7T—=—, » Z=R-) 12,
a” p.c, 1,2 2 T2

. t
and solving for T,,

(‘-a\ Tmf—";::—l (zo--———- (a t)-] qnc(.(z-tb)’m("::)
BASG  E  RT P

<2 kAt (z‘——— (‘—9 J
G e R i me e e

d. Special Thick-Thick with 85 < 15 (Figure 30)

T

Ta

:
a
< —

(1) O-as > -

The energy balance for T; is

Qeond 1Az + qcond A Astored (A3 + Ad)
1=~ 2 3—~2 2
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Letting Z = R -, T, and solving for T3,

oy, il Bt et el o
Clew) e (z-f ':: oy
‘. ; 154
T, s u.m (ur.-a) . ('.l-za) "‘!:!?‘ ("'.T:)< .l‘: ‘L?zf ( )
“70 ¢ —_ :8] p,c,; 0[(7.--:-"-) ::‘] Py Cp 7:;
(2) -1-; < a < T,. The energy balance for T, is
%cond 1Az * 9cond 3‘5‘2 = Astoreq (A3 T Ad)
1—2 32 2 (155)
or
ka b 1 1
(Ta-la) (Tm" T) lj-}z +.‘-r—1; (T3"Tz) ‘é = PaCa(a" >A3
-r 1
tep oy ’z_b A-ﬂ} <T24;tTZ) (156)
where
2 2
i T, - a (Ta - a)
1-2—4)_(RZT2+ 2 ) * 12 ]
- e\ 7.2
b b
2 ¢ (R ZTZ-T ¥ _1‘2—]
2 2
T, - To -
Az =¢ [(.R-ZT2+ az a) +(a12 ) }
b b
e -2
Letting Z = R -Z T2, and solving for T'z,
R ey bt o e -2) 2
o (z._z:_t).u_:) ,.c.(....).( ) LAY s
e 22 G .*b,:'(n.‘) (-2

= ’“(,,'_-;)‘ r__..)j e -

Heat flow in the second thick layer is determined from those equa-

tions presented in Section II for a nonrecession case.
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e. Special Thick-Thin-Thick with 63 < 14 (Figure 31)

Mater

al

Material B
Thin  Skin

Material ¢

_——

——-—-—.—-_-A

] rb rc "'c

Figure 31.

T
(1) 0=<asg —23 . The energy balance for T; is

(158)

i L RS

o s ter e
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rages
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e
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b
€
4

Tc| (Tp = T3
+ Aypb cbh Th + A; pc cc-é—J (_z_____g_ (159)
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1
. where
- ( - 2 (‘_ )Z -
a "~ a a - a
3 lf}z-ci) (R-E T2t —3 ) + 3
Te V¥ Te
57 (R DT 2) "1z
T4\ 2 Taz‘
A3 = ¢ (R -E TZ+—Z) +Z§
- z -
Th The
As= ¢ (R -E Tz-—z-) 73
[ e\ Tl
As:“’{(“z‘:“”b‘f) |
Letting Z = R -Y_ 7, and solving for Tz,
kAt [I T - \ ‘r_._' ke At £7. .o ‘I 'c\ fl]
T 'n“)‘Tm 'A l(ZO 2 ) ]‘T’ ‘c "a}"?"b ’).
: 2 Ta Tyt Ta Ty Te\t ’c 'c'
T {(ZOT) LTy pac‘?t (2- ._b Pb Cb Th ¢ (7"b 4) pccch (160)
1 ! k, & fa.a‘ r..g‘ ¢ a-a Te e
% ‘a"*ﬁ’i‘"(z'_i)’(lz) 'E—'?'( va)("'b' )‘Tz'
| | L O S Y (e =
i Ta [
¢ (2) S <as T, The energy balance for T, is
3
{
! 9ond A * 9cond 3Az = Astored (A3 T Ay + A))
1—2 3—-2 2 (161)
or
i “a (’I’ T')A+EE(’I‘ ) Asoc( )
; (Ta'a) m 2] (22 Te 3 afaiTa
R T,-T
] + Ajpp Cp Th tAg P CCZ] (r. ZAt d (162)
3
% where
- 2 2
T - a To-a
[ — R N | §: 30 W ) + (—3-]—-?-—) ]
1-2 Lad (3 7 4
Tl Tl
A - R -E Ty - T -—) + ==
3-2 ¢ ( 2 b 12
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Ta-a (ra - a
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r—l e ]
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A,
] \2 2
Te Te
AS“"_(R 2w )

Letting Z = R -) T2 and

AS A4 A5 Tc
A=-¢—pa ca(‘ra- a)+-¢f prbTb“""&)' PcCc3 ¢

and solving for T:-;

f 2
k. at T, - & {ra - a) ke At (-r - a T T2
a a° 4 a + NS¢ a c C
Ira.a) +Tm 2 [(2.4» 3 ) + 3 + Ty o o Z- - to5

T; = b A ) -
k, at (z - n\z (a-a) | kedt [Tn- a) ( AR
Taz @ Lo Ta z /! 12 ‘e \ T Z- -5y t7
Ta A
. (163)

Heat flow in the second thick layer is determined from those
cquations presented in Section II for a nonrecession case.

65

o
I3

e

A

g

st 2
¢

Syl

wen e e gm | ey

g
- o R

e
W g

O

s,




S AU,

. A A

Section IV. HEAT CONDUCTION AFTER ABLATION TERMINATES (Tiand T;)

With the equations derived for heat conduction prior to ablation
and during ablation, the heat conduction equations after ablation stops
must be considered. The equations for conduction prior to ablation
cannot be used after ablation ceases without some modification to the
temperature grid because there is no assurance that the ablation into
a new T will be zero, i.e., the ablation usually will not cease with the
receded surface coinciding with an original temperature node location.
i Although it is possible to select a new temperature grid system for the
material left after surface recession ceases and to obtain proper tem-
perature of new nodal points based on interpolations from the calculated
temperature gradient when ablation ceases, an approach is taken herein
! whereby the original grid remains unchanged. Heat conduction equations
for T; through Tn are derived in the same manner as before and during
ablation. The equations used to calculate T and Té are derived in
s Paragraphs 1, 2, and 3.

1.  Flat Plate

a. General Thick (Figure 16, Ty Taking on the Value Ti)
- with 65 > 74

-
(1) 0<cac ~2 . The energy balance for 1, is
) g8y

dnet, & - 9cond A “ 9stored 4 -
12 1 (164)

[N

For the flat plate conduction, A may be taken as unity; then,

k, : . Ta Ty - T
o g (1) e (B B2 s

The energy balance for T; may be taken as

T s

H 9cond A * 9cond A = 9stored £
1—2 32 2 (166)
H
or
ka ) .) L ' ' (Té - Tz)
oy (o) (o) e en BETL e
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This equation is the same as Equation {74) while the surface is ablating,
. 1
except for Ty, taking on the value T,.

Since T3 through Tn, including any interfaces, can be calculated
by using ordinary forward finite-difference methods, Equations (165)

and (167) have two unknowns. Solving Equations (165) and (167) simul-
taneously and letting

k, At
results in
T
Ta'a Ta - a ‘ 5T qnct At
, ’ T + 83 |1 +—% T 2 + Ba |T2+ TS Ba
Tl = a _( [a)("’a a)] \ ] Ta Pa Ca.r;a ] [ ] (168)
Ty = al=—- a —_— .
——-,—aTz—— s eaJ 1+ Ba) + pa(-%——)
and
[ 29 ] s a(2)
t qneto —2— -
1!« | Taz + Ba [Tz +Ba Ts] tPag 7t Tifa - (169)
9T o
+ B, [1 + pa] +Ba
Ta
(2) —z— <asT,. The energy balance for T{ is
qnel:O A - Qeond A T 9stored A
12 1 (170)
For the flat-plate conduction, A may be taken as unicy; then,
q “a (T' 'r') 0 (171)
A 1~ T2} = .
neto (v, - 3)
The energy balance for T, may be taken as
9eond A * 9cond A = Istored &
1—2 32 2 (172)
or
k k
a ' 1 a 1 '
(Ta - a) (T; - Tz)+ T (T3 - Tz)
3T ( !
. a T; - T2
Fa ca( 2 - a) _'_At'— . (173)
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This equation is the same as Equation (78) while the surface is

ablating, except for Ty, taking on the value Tj.
and (173) simultanecously and letting

Solving Equations (171)

5 - k, at
& pacaTat
gives
-31’ 3ty
Ta (—i.-a)(T“-) Ta'“] <T'> .
T} ;""eto(ﬁ) Ta : ' "a*“a( T2 ),* B\Tmm )+ Bh (174)
Za,
zT . By
a
and
31'a
T -_— - a
a \ 2 :
. 9netg k_a> Ba +T2 T2 + T3 B,
T, : . (175)
2Ta
2
- + Ba

It should be noted that the denominators of Equations (168)and (169)
are identical as are the denominators of Equations (174) and (175).

When "a" — 75, Equations (174) and (175) for T) and T} reduce as
expected to

L T Ta t
Ty =T, -qneto T{-; + T3 .

b‘

(176)

Special Thick (Receding Surface < 7, from Backside,

Figure 18, T, Taking on Value Tj)

with 6§, < 7,

When the receding surface is less than one incremental
T from another material surface or backside, special considerations
must be made for all material couabinations normally experienced.

Ta
(1) OsasT.

et A= 9ond A T 95t0red £ -
1—2 1
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The energy balance for Tj is

(177)
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For the flat-plate conduction, A may be taken as unity; then,

ka 1 t Ta (T; - Tl)
meto o (T ) < eacal3 o) BEH o

The energy balance for T, may be taken as

Yeond A - qnet-l A= dgiored A

1—2 2 (179)
or
ka I ' Ta (le - Tz)
a- 2 (7 1) - aney =pacay T (180)
Solving Equations (178) and (180) simultaneously and letting
. - k, At
AT paca T’
gives
‘ra -4 .2 ] [T <:ZE A a\ N Yneto A ] [ 2 Qnety At]
'I‘; = a Pa 1 ! Ta_ [/ Pa Cn"‘n-r * Pa|T2- aCaTa (181)
= + Ba+ 26n \ =
and
Ta T ;
5 [’I‘ <T ) :)"_ Qnetg At ]+[(—2_a - a)(ra - ) ] [ 2 qpetj At
v Ba |Ti "2 Pa Ca Ta Taé * Pa Tz-m
T, = a ' 7 (182)
E-6-d L, (E
Tal Pa + 2B, =
Ta . 1
(2) S < as T, The energy bLalance for Ty is
ety ® ~ dcond A 7 Istored 4
co 1—2 1 (183)
For the flat-plate conduction, A miay be taken as unity; then,
k
a 1 ]
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b :
’ The energy balance for T, is 1
9cond A - Inet; A = dgporeq A -
1_’2 2 (185) ;' )
or 8. )
ka : Ta- 2 (Té - Tz) F 1
(Ta - a (Tl - T%) - qneti =P, ca( 2 ) At * (186) .
Solving Equations (184) and (186} simultaneously and letting k '
ka At '
Pa = Pa Ca Ta? 4
results in
2
' Ta Ta Ta -
Tl - TZ + (Ta _ ) qneto (ka) {pa +( Ta > ,
Qnet: At 1 Y
_ et A (187) : :
pa Ca Ta . ; 5
and S
i -
! - Ta Ta Anet; At E
T, =T, + (TT:_a) dnet, K, B, - o2 ca Ta (188) L
H SN
: c. Special Thick-Thin (Figure 19, Ty Taking on Value T;) =]
‘ with 6, < 7, N
Ta (-
(1) 0<sas< > - The energy balance for T, is
\ qneto A- 9cond A = Ustored A - Y
1-=2 1 (189)
For the flat-plate conduction, A may be taken as unity; then,
ka [ 1 (Ta (Tl' - T])
9net, - (Ta - a) (Tl i Tz)  Paca\7 - a) Y (199)
1
] .
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| .
‘ The energy balance for T, may be taken as
Acond A - 9net; A = 9stored A
1—2 2 (191)
or
k T
a ' ' a
g (1) - aney = (pa e
(Tz - Tz) )
+ Pp Cp Tb) —"‘-'—"t (192)

Solving Equations (190) and (192) simultancously and letting

k, At
Pa = Pa Ca Ta
gives

T,- 2 k, At q Gnetg A q ey A at
a'ra t ara Ty ( ) + :;:- ca Ta + PaTe- m’
"a(Pa Ca3 tPbeh 7b) Pa Ca -;,_— ¢+ Pbch 7D

)
(ot el Y

e ey (193)

and

T

.fa(:a('a"z"4ﬂbcb'r Pa €a 3" ¢t ph ch 1d

- T
k, &t <.z‘5 -a Unet,, At ('a - ‘)("2"i - 3) Gnety At
O
Ta ) T\t | ot + Pa) | T2 »——p———
b

)
Ty (Pa ca~z—a tpy cb'rb) (194)
2) = balance for T,
(2) 5 <asT, The energy balance for T, i

Ynet, ©* - 9cond A = Q5tored & -
1—-2 1 (195)

For the flat-plate conduction, A may be taken as unity; then,

ka t 1
Ineto ” [r, - a) (Tl - Tz) =0 (196)

71

i

T

o #Mb&

T, e RN - T, T

T ihm

o

.
i

vl ™
O

i iR

“

e v s R A



B e

FOITWARNT T Y RS T TR, W Y L SRR Ty e e

The energy balance for T; is

dcond A - Ynet; A * Istored A
1—2 2

or

(Ti - Tz)

+PbeTb] x:

Solving Equations (196) and (198) simultaneously gives

)
1

At

a 1 '
(Ta - (Tl - Tz) - qneti =[ z Ca (Ta - a)

Ta"a

|

y = T2t qnetoh

Anety At

{fa ca (Ta - 3) + Pb b Th}

and
4

At [qneto - qneti]

H]

T, = T, +

{pa Ca(Ta~- ) +Pp Crb Tb}

+
Pa €a (Ta = @) * Pb Ch Thit

ka

|

(197)

(198)

(199)

(200)

d. Special Thick-Thick (Figurr 20, Tm Taking on Value T,)

With 6a < Ta

-
(1) O0=<acs -2 . The energy balance for T} is
2 gy 1

qneto A - 9cond A= 9stored A

1—2 1
or
ka (T1 - T2) (
9nety - (Ta . a) * PacCa

i2

2

Ta _ a) (T1 - Ty)

At

(201)

(202)




The energy balance for T; may be taken as

9cond A * 9cond A = 9stored A
1—-2 3— 2 2 (203)

or

k Kk \
— (Ti-T;)+—E (T;-Tz)
(Ta - a) Th

Ta ™\ (T;- T
:(pa Ca + Pb Ch -E_) (——ZK{—Z) (204)

T; through T;,l can be calculated using the standard forward finite-
difference equations given in Section III on heat conduction prior to
ablation.

Solving Equations (202) and (204) simultaneously and letting

ka At

2
Pa €a Ty

Baz

results in
2k, At 2ky 8t fra-a)
Ta -2 T2 T ( Ta_ /) qnv!o 2Zkp At
4+ +
ot lpacaTatrpcy 'b: T’ 9; CaTa Pa Tt T3 ™ ("a CaTatPbCh "b)

T a Zka Al Zk[, At ['a
o i 2k, At - -a
‘4 +
a 'b(Pa cy T2+ Py 'b) \ T2 1‘ ("aca I "bcb ’b)

(205)
and
202 amgne| Jeoe Y
7a(Pa Ca Ta * Pb <L Tb) [T' (l . )' (:’.; :‘a Ta [ )'" l[‘r,*‘l‘, Th(Paca TatPb b ’bJ
- . 2, At 2k At (r.-a
2Zky, At (_2--‘\ Tard __a t T 'A)
%a “'b(vafa'a'ﬂbt‘b'b) N/ . (Paca'a“’bcb'b)
- - (206)
.
(2) —éi < acg T,. The energy balance for T is
dnet, & - 9cond A = stored & - (207)
]—2 1
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Then

. ka 1 f
9nety - (Tma - a) (Tl - Tz> =0 . (208)

The energy balance for T; is

9%ond A t 9cond A * 9stored A
1— 2 32 2 (209)

or

K k
Frog (e ey () paca (o
+ pp Cb%] (T;A-tTZ) ' e

Solving Equations (208) and (210) simultaneously gives
kaAt kp At Ta-a

Ta\|Ta-a Ta ! T ( Ta ) kp, At
qneto(i: " ST+ T4 Ts
b

T Th
Pa Caj(Ta~3 +Pbcb? pPa ca 7a-a)+pbcb7

kp ot
Le—— 5
Th|Pa Ca ("a'a)i-Pbe?: (211)
and
Gnet,, Ot k, At

2 = + T3 + Ty b 5]

Pa €a (‘fa - a)+ Pb cb 5~ Tb|Pa Ca (Ta' a) +Pb cb
Ti = . (212)

kbAt

1+

i 5]
TbPa €a \Ta - 3] ¥ Pb Cb 5y

e. Special Thick-Thin-Thick (Figure 21, Ty Taking on
Value T,;) with 65< T3

T, through Th is first calculated using the forward
finite-difference equation,

.
(1) 0<as —é—a-. The energy balance for Tj is

dnet, & - 9cond A = dstored A (213)
1—2 1
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T At - . e e A 0 o e R
or
ky 1 1 (Ta (Ti - Tl)
Anetq - (T_a j_) (Tl - Tz) =Paca\3 - a) T (214)
The energy balance for T; is
dcond A * 9cond A = dstored A
1—2 3= 2 2 (215)
or
ka 1 1 ke ' ] Ta
F;T‘af)" ‘(~'1:l»-'~-'1‘.?.)~.'*‘_ T (Ta - Tz) =[9a Ca
e (1 - T2
+PpCh Th t+ Oc Cc"z_] VYR (216)
Solving Equations (214) and (216) simultaneously and letting
Ta Tc
B=p, Caz tPbCh Th*PcCc3
and "
k, At
Pa Pa Ca Ta
gives
L kaAt+kaAt (1;,-;1\] [ <Ta ]
Ta- @ Ta Te Ta ) 2 - nety At , ke At
T; -"-J.a’\\ B T "’a>§ PaCaTa +ﬂa[TZ+T’ TCB]
g k, At ke At f15-a )
keatl 27 " 2|7j71,-a Ta_ ' ¢ _\Ta
Ba 1+ e B + T T * B
¢ : : 217)
and (
Ta 1r Ta
kz At (T'a q At (ra - a){==-a
T [ ) ), ( ) ][ g ‘iz‘:;]
T; 2 4
Ta k, at ke &t fr, - a,\
k. At < -3\ -a —t — -
aa [l+ Te B]+< Ta >[ a‘l’a + . Bc ( - /]
(218)
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(2) —2?- < as 73. The energy balance for T; is

Anety A - 9cond A = 9stored A

1—2 1 (219)
or
ka ' ]
qnoto - (_‘I'_—":'—') Ty -T2} =0 . (220)
a
The energy balance for T} is
9cond A+ 9cond A 7 Ustored A
1—+2 32 2 (221)
or
ka ke
-(—T—a_—) (Ti - Té) +-_;-(-:- <T§ - T;) =[Pa Cy ('ra - a) + PpCp Th
Te] (zs - T))
tPccCeg At (222)
Solving Equations (220) and (222) simultaneously and letting
Te
B =pa Ca("’a“ a)+Pb Cb Th *+ Pc Cc
results in
ka8t ke At (1a - a)
Ta T, -2 T T Ta k,
,aneta() [P )y, et (223)
b ke At
+ o B
and
Inety At . Tyt T ke At
' B 2 3 Te B
T, = . (224)
ke At
14 o B
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2.  Cylinder

a. General Thick (Figure 22, T, Taking on Value T1) with

I .
§,>74 y §
| '

T; through T, including all interfaces, are calculated
from the general heat conduction equations for cylinders.

T
(1) 0<ac< —zé. The energy balance for T) is \ ;
s ;
Ynet, A1 - 9cond A2 = dstored A3 % :
1w 2 : (225) : :
or :
A ka - T3) A
Anet, M - [a - a) T1-Tz) A :
Ta (T{ - Tl) )
where

>
n
1
[«>]
-
——
o)
N
_i
v
+
-l
o
o
e

Aj

1]
[«+]
-
TN
e}
|
4
™~
+
o]
N
1
[V
i

The energy balance for T, is the same as Equation (105) if Ty is
replaced by T{.

[ -

Solving Equation (226) and modified Equation (105) simultaneously
and letting

ka At
Pa Ca Ta®

Ba =

and Z =R -Z'rz gives
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a
T, =~ Qa T, - a - - a At
a By k] By 2 ety Bs B|) ' (P_)_
. a " Pa (Bz) ' t‘a( "a) (“l)] |Tl<v Ta > P Pacata (nd) *Palp,) Tt Tafa l‘\}
Ty = = -
ry - -a 2

(227)
and
T-' a
(’1 "‘)— "‘2 B B B 7 ") qnet, At /B
, [ T ' Ba (‘T,:‘)] [Tz + Ty By F:)] +8; (ﬁ)['ﬁ( = > o ‘Ca ™ (’fﬁ)}
e ;
fa- a3 - B B 7 "%} /B
[T | [P I e -
where
Ta - &
B, =2+ 5
B, =2
Ta
B3 =2 - 5
-3L% a
2
By =2 + 3
B5 =R - a
Ta (.
(2) S <asTa The energy balance for T, is
dnety, A - 9cond A2 =9stored A3 (229)
1~ 2 1
or
ka ' '
Qnety A1 + (Ta = a) T2-T1) Az =0 (230)
where

A1=8L(R-a)

Ta-a
A, = 6L Rzrz+ :

78




The energy balance for T, is the same as Equatien~(1.08) if Tm is

replaced by Tj.

Solving Equation (230) and modified Equation (108) simultancously
and letting

k, At
a
Ba =

=TT L L 2
PaCa Ty

and Z =R - v, results in

3ty
A . 3v,
Bs)('a)[( 2 a)(’" ' “) (n.) Ta- 3\ (B (T - A
. —_— e | er—— L Y =28 - 228 N B
T - Ineto (Bl ka Ta2 ' Pa By ‘ ﬁa( Ta ) (Bq) ' Ty Ta T3 8a (F:)

1

31,
5 n(E)
and
375
— - a
Bs\(Ta Z g (B2
: qneto (B4)<ka> ﬁa + Tz T + T3 Ba<B)
T, = (232)
37,
z "%, s (B
Ta a\ B,
where
Ta - 2
By =2 + a >
T
By =2 - —Za
Ta
— - a
Bs=2 +£._2___
B5 =R -a
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b. Special Thick (Exposed Surface = v from Backside)
(Figure 23, Tp, Taking on Value T)) with 6,5

-
(1) 0sas —;- . The energy balance for T; is the same

as Equation (226).

The energy balance for T, is the same as Equation (111) if Tm is
replaced by Tj.

Solving Equation (226) and modified Equation (111) simultancously
and letting

k, Ot

B, = ————
& pacy Ty

and Z = R —Z-rz gives

Yﬂ
T,-a - -a
_a_;__ ‘28, _g_n T 2 . Gnet, At By + 8 /By Ty - 2 qpey; At B,
- a 4 Ta PaCaTa \Bs B« ®a€aTa Be
- | a’;
a ;

and
w g (B 2 qne; At [, m\l _"_za i
. 7.12 ' ?’: Te- Py Cq Ya F& ' 263<-B_6‘> T Ta ' Pa €a Ta (E)
Ty - * . ] l |
r Ta T
R ERE B Y
Ta* 2\B A\ By Ta (234)
where
T, - a
a
By=2+ ""—2———
B, Z
3ra
-—=— - a
2
By - Z 4 —
Bs R-a
Ta
Bb VAR T
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(2) —;—1- < a £ Ta. The energy balance for Ty is the same

as Equation (230). "
The energy balance for T, is the same as Equation (114) if Ty is ‘°
replaced by Tj. N
Solving Equation (230) and modified Equation (114) simultancously 5;,

and letting ;
3

5 - k, At 5

2 T paca Ty

e -

[

and Z = R -Z'rz results in

z A
- Ta Ta\ /Bs Ta” @ ﬁ
Ty = T2+ ("'a _ a) [q“eto (ka) (Bl) {Ba +( Ta ) } §
q . At ‘
 dne; (2)] (235) §
Pa €a Ta B
3
and
l - Tal (Bs
T, =Tz + (Ta a) [qneto Pa (_k_) (—é;> |
- 9net;
Pa Ca Ty B ?
&
where Si
T, - a
Bl = Z + 2 2
B, =2
BS =R - a

c. Special Thick-Thin (Figure 24, Ty, Taking on Value Ti)
with 6,2 1,4

.
(1) 0=acs -23. The energy balance for T) is the same as
Equation (226).
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The energy balance for T; is the same as Equation (117) if Ty, is
replaced by Tj.

Solving Equation (226) and modified Equation (117) simultanecously

and letting
k, At

o e T2
Pa€a Ty

Ba

and Z = R -ET; gives

Ta
ra-a  kyat fp) Z "‘\ Ineto At [ B\ ... By
——— } — =] 4 =} 1T: - 9,01, Ot
. [ Ta ' Ta (B i Ta /‘ Pacata \Bs fa i) " Met, B
Ty = - "
Ta ) Ta
o AE ) e (2
fal a 84 Ta B "a

and (237)
" ' . ' TN L (238)
bl oy e D)
where

Ta Ta b
B - (Z 42—) Pa ca—z—' + (Z -—é—') Pb b Tb

Ta = A
ByzZ+: —m—
3Ta
— - a
2
By = Z + ——————o
B;-R—a
B22 - 71y

-
(2) _Z_a <a ¢ Ty. The energy balance for Ty is the same

as Equation (230).

The encrgy balance for T; is the same as Equation (120) if Ty, is
replaced by Ty.
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Solving Equation (230) and modificd Equation (120} simultancously
and letting Z = R -3 7, results in

1 Bs Ta - a B5 B,
Ty = Ty + qneto At (‘E“) + <—'—'ka ><’E'l'> - qn(‘ti At <—1'3—> (239)
and
. At[q, (Bs) - q .(B)]
Ty = Tp 4 e (240)
where
Tg - A T
B - (Z + ——2——) Pa Ca (Ta - a) + (Z - '72—') op ¢p Tb
T, - a
By =72+ —ai-—'
B5 =R - a
B7 = Z - Tb

d. Special Thick-Thick (Figure 25, Ty Taking on Value T1)
With 6,5 7,

T; through Tp are calculated from the general heat conduc-
tion equations for cylinders.

T
(1) 0=as —23 . The energy balance for T) is the same
as Equation (226).

The encrgy balance for T, is the same as Equation (123) if Tm is
replaced by T).

Solving Equation (226) and modified Equation (123) simultaneously
and letting 72 - R -2 T, results in

n, A Ky, At Tat A
e 22 ()
FL. NS N 143 Ta 1
- n
YR — - -1
- ['-I el

= A g at (By) Ky, St (1
A2 , oty . 8 /1) T T [ th]
" Ta Py <a ta (B Be B
T k; kp Tac 3
, [ o] [ 2 armo e sy (-;'?;_-)
e e o P b -

(241)
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and

Pa Ca Ty

\ .m(lh) ky, At (n.) {ra--
3 (ﬂl) 14 ky attB) b A
a\n, Ty (D) B

'.‘l
k, at () . 2, Gney 8t (- "‘ ‘i, n .kum g,
N Y KT B
')

(242)
where
., Ta Ta b b
B ‘(Z-PT> Pa Ca +(Z‘T)Pbcb_2'
Ta-'a
By =2 + >
37,
— - a
Ba=2Z + 22 -
BszR-a
Th
BS:Z- 'E— .
T

(2) —Zi < a< T3. The energy balance for T, is the same

as Equation (230).

The energy balance for T;, is the same as Equation (126) if Ty, is
replaced by T).

Solving Equation (230) and modified Equation (126) simultancously
and letting Z = R -Z T, gives

dnet ( >(g\> .r., -2 k“ & (s .(-;") At (By) (——;—a) R o, M‘(r:‘)-
A CA /8 M . 243
" kp, At (B,) ( )
N
and
Bs kb At (Bg)
T} B b (B) i)
kp At (Bs)
b (B)
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where
B - (Z+Ta;_a_) Pa Ca (Ta- a>+.(Z--%E) pbcbjz—b
B, ..z+15‘-—_§—a—
Bs =R - a
.

e. Special Thick-Thin- Thick (Figure 26, Ty, Taking on
Value T;) with 65 < Ta

T; through T;l are first calculated using thic forward
finite-difference equations for cylinders.

T
(1) O0=sacs -Z—a . The energy balance for T: is the same
as Equation (226).

The cnergy balance for T; is the samc as Equation (129) if Ty is
replaced by Tj.

Solving Equation (226) and modificd Equation {(129) simultancously
and letting

k., At

6. a
ar~ 3
Pa €a Ta

and Z = R -Z T, results in

(BJ)

AP} k, at(By) kAt
4
Ta ta (B) v (B)
T

“ () [ P (::r)].

'-I '-l
k, At TR 90, (’ - ")(" - -‘) N
A myL L , It LA R 2 ca (B, o at fn,
Ta b Ta Patata \Ba Tt n, e 4]

""'“’”]‘ - (246)

Ta
s (™ kK ar fp) 20 Pram e kar My} ko oar fg)ogr oo
? (“: b A B ) Ta Ta ’ Ta m ' '"—':'_ G (. T

- T

and

I DI

-LE
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where

Ta Ta Th Te Tc
B =(Z+T) paca—z—+(Z-'Z-)prbTb+<Z-Tb--Z—) Pc e
Ta-a
By =2+ 2
3Ta
— - a
2
Bs=2Z + 5
Bs= R -a
Tc
Bg:Z-Tb-7 .

r
(2) -—23 <a s T7T,. The cnergy balance for T; is the same

as Equation (230).

The energy balance for T; is the same as Equation (132) if T is
replaced by Tj.

Solving Equation (230) and modified Equation (132) simultancously
and letting Z = R ~E T2 gives

Ta By Ta - o k, At By ke At /B T, -~ a ke At
) [ Ds La v _ g T [De a v < Bq
' Inet, (ka) (B, Ta * Ta (B)+ Te (B) ( Ta ) tTa+ Ty = T (F)

Ty = N
]5k_c£ (E?)
Te B
(247)
and
B ] kC At B
. Gnetg At (ES) * T+ Ts—- (‘B'?)
T, (248)
k. At
52
c B
where
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— - - e e o = on e o i i A e -

T,-a
By =2+ >
B5 =R - a ’
4
Te L
B9 = Z - Tb - 7 . g
3.  Sphere ¥ ‘
| 4
g ‘ A1
a. General Thick (Figure 27, T,, Taking on Value Ti) with ; .
6,> Ty
N }

Ts through T;l, including any interfaces, are calculated 4 ]
from the general heat conduction equations for spheres.

T
(1) 0< ac Ta . The energy balance for T; is

Yneto & = 9cond A2 =9stored A3 ;

1 ‘ (249) %3
or |
kg ' 1
{
Inet, A1 - ("'a - a) (T ) Tz) Az i
i
Ta (Ti - T ) %
= A3 pycy (-2_' - a)——Kt_l {(250) ;
i
where § %
A = ¢ [(R - )] : |

X 2
Az = (R.ZT”T""Z_a_) +(T_"=‘_;_Z_f)]
y 3"'a 2 (Ta ) 2 ]
- a —— - ;v.
Aj = o} R ZT; + 2 + z . ) g
|

The energy balance for T is the same as Equation (135) if Ty is
replaced by Tj.

87

-




P ——————

A

Solving Equation (250) and modified Equation {(135) simultaneously
and letting Z - R —2 T, results in Equations (227) ana (228) where the
following parameters take on the new values of

| ma-a\t [1y-a)?

LI .

2 = +ﬁ (252)

Ta\? = Tal
B; = (Z - —2—') +-T2' (253)
2 2

Bs=\2Z + — + 1z (254)
Bs = (R - a)% . (255)

r
(2) -Z—a < a < Tz. The energy balance for T) is

9net, A; - dcond Az = Agtored A3
1—2 1 (256)

or

qneto Ayt (

. aa) (s - i) A= 0 (257)

where

Ar=¢ (R - a)

Az = ¢ [(R ZTZ + Taz' a) . (Tal‘z a)z]

The energy balance for T, is the same as Equation (138) if Ty is
replaced by T;.

Solving Equation (257) and modified Equation (138) simultancously
and letting Z = R -E T, gives Equations (231) and (232) where the
following parameters take on the new values of
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L2l ua

ra-a\ (ra-a)’ |
B, = (z+ 5 -> T (258) | t :
TN % %
o[y :
- Ta 2 (3Ta ) 2 ; t 3
Z "2 2z @ :
Bs = {Z + > + T3 (260) ;
! 4 ;
Bs = (R - a)® . (261) ?

b. Special Thick (Exposed Surface < 7, from Backside)
(Figure 28, T, Taking on Value Tj) with 6, < 7, )

-
(1) 0sasx —Z—a . The energy balance for T is the same |

as Equation (250).

The energy balance for T; is the same as Equation (141) if Ty is
replaced by T).

B i T SO T

Solving Equation (250) and modified Equation (141) simultaneously
and letting

5 - ka At ;
a7 pacaTat ’
and Z = R 'ETZ results in Equations (233) and (234) where the following ; ’
parameters take on the new values of )
f,
T, - a)\z (Ta--a)Z
By = L(Z = ) + EEVEE (262)
L g2, 12
Bz =2+ 1z (263)
N ()
2 2
By = {\Z + > + 3 (264)
L J
K
Bs = (R - a)? (265)
Ta 2 TaZ )
Be _[<Z +-z-) +T§-] . (266) 3
o
5y

| U Y




(2) 5 < a < T4. The energy balance for T; is the same
as Equation (257).

The energy balance for Té is the same as Equation (144) if Ty, is
replaced by T).

Solving Equation (257) and modified Equation (144) simultancously
and letting

k, At

By = —2
PaCaTa

and Z = R -ET;_ results in Equations (235) and (236) where the following
parameters take on the new values of

Tg - a 2 (Ta_a)z
B1=[(Z+ 5 )+ 5 ] (267)

B, = 2* (268)

Bs = (R - a)®. (269)

c. Special Thick-Thin (Figure 29, T,, Taking on Value Tj)
with 6a =Ty .

T 1
(1) 0sas _;_ . The encrgy balance for T; is the same

as Equation (250).

The energy balance for T; is the same as Equation (147) if Tr is
replaced by Tj.

Solving Equation (250) and modified Equation (147) simultancously
and letting Z = R »2: 7, gives Equations (237) and (238) where the
following parameters take on the new values of

Tal? Ta? Ta ( Tb)z
B =B(Z+T) '*'Téépaca’f* iy

T2
+ 0 Pb b b (270)
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aad S e B e e e

2 ( )2
Ty - @ Ty - a
-[(z+ - ) o ] (271)

B) =
2 2

3Ta . (_1_'-3 a)

2 2
By = I\Z + ——7—' + —Té—'- (272)
Bs = (R - a)® (273)
By =(Z - Tp)° . (274)

Ta [
(2) S < asTa. The energy balance for T) is the same

as Equation (257).

The energy balance for T; is the same as Equation (150) if Ty, is
replaced by Ti.

Solving Equation (257) and modified Equation (150) simultaneously
" and letting Z = R -E T, gives Equations (239) and (240) where the following
parameters take on the new values of

3 2 2
Ta - a (Ta - a)
B =|lz+— A Pacalta-a
[ Tp\? TP
+ (Z - 7‘) + TZ-] Pb b b (275)
. 2 2
T, - a Ta - a
B; = (Z + aZ ) + -—-——( a12 ) ] (276)
Bs = (R - a)? (277)
B, = (Z - 1,)° . : (278)

d. Special Thick-Thick (Figure 30, T,, Taking on Value T})
with 65 s 74

T3 through Tpare calculated from the general heat conduc-
tion equations for spheres.

T
(1) 0=sas ?a_ . The energy balance for T) is the same as

Equation (2590).
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The energy balance for T; is the same as Equation (153) if T is
replaced by T).

Solving Equation (250) and modified Equation (153) simultancously
and letting

k, At

Pa Ca Ta?

Ba =

and Z = R -) 7, results in Equations (241) and (242) where the following
parameters take on the new values of

Ta\? Ta? Ta
B —[(Z F—4—> +48]paca2
[ Th\? TR Th
+ (z-—;) +E]prb—2— (279)
L
Ty - a 2 (Ta - a)Z
By = (Z + > ) + B (280)
3Ta A\ [Ta a) :
. 2 2
By = \Z + > + 1z (281)
Bs = (R - a)° (282)

T 2 Ty 2
sl ] 253

(2) ——)9- < as< 73. The energy balance for T) is the same

as Equation (257).

The energy balance for T, is the same as Equation (156) if T is
replaced by Tj.

Solving Equation (257) and modified Equation (156) simultaneously

and letting Z - R -Z 7. gives Equations (243) and (244) where the following
parameters take on the new values of

[ Ta- ayf Ta - )2
B [(Z,+ > ) '.( lz__. ]pa Ca (Ta- a)

. Th)? "h? T
* {(/ ' T) : Tg] °b b7 (284)




R " ST

Ta - a 2 (Ta - a)z
By =\Z ¢ 5 + 2 1285)
Bs = (R - a)® (286)
Th 2 sz
o[- %]

¢. Special Thick-Thin-Thick (Figure 31, T,, Taking on
Value Ti) with 65 74

Ts; through Ty, are first calculated using the forward
finite-difference equations for spheres.

-
(1) 0= acs -2 . The energy balance for Ti is the same
> gy

as Equation (250).

The energy balance for T; is the same as Equation (159) if T, is
replaced by Tj.

Solving Equation (250) and modified Equation (159) simultaneously
and letting

k, At

a
B. =
a

2
Pa Ca Ta

and Z = R -Z T, results in Equations (245) and (246) where the following
parameters take on the new values of

i Ta\2 Tal] Ta Tb)z Th?
B —.(Z-l-'z—) +'-4—8- paca—z—+ i +T2 Pb €b Th
[ Te\? Tl Tc
+ .(Z - Ty - _‘—1—) + 8 ] PcCc 3 (288)
2 ( )Z
T,-a T, -
Bl e 22 o2 ] (289)
i 31, 2 (Ta )2
—— - a — - a
2 2
By = (Z + — + 1 (290)
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Bs = (R - 2)° (291)

TC 2 -rcz
Bg = (Z-Tb-—é-) +T?: . (292)
Ta
(2) - €2asTa. The energy balance for T) is the same

as Equation (257).

The energy balance for Té is the same as Equation (162) if T, is
replaced by Tj.

Solving Equation (257) and modified Equation (162) simultaneously
and letting Z = R - T2 results in Equations (247) and (248) where the
following parameters take on the new values of

[ Ta—az (Ta_a)z
B=(Z+ > )+ 12 Paca('ra')

[ sz sz TCZ
+ (Z-7> +-1—2 ]pbcb'rb+[(z-1-b-—4-—)

L

T 2 T
+ oo ] Pe S5 (293)
oo fa)]
B; = [(Z + > ) + 1z (294)
Bs = (R - a)? (295)
TC 2 TCZ
Bg = {lZ - T} - K3 '!"1—" * (296)
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Section V.  CRITERIA TO STOP ABLATION OR SURFACE RECESSION

Once a material surface has reached the critical temperature for
ablating, melting, or subliming, and the surface starts to recede, the
criteria for stopping the ablation (recession) must be established.
Under normal conditions the heating rate to the ablating surface is
decreasing with time when the ablation stops. With this in mind, it
was decided to examine the T) equations applicable to post-ablation
heat flow to see if a criterion could be established. Since gnet, is the
only driving paramcter found in the T] equations in Section IV, there
are critical values of qpety bel '» which the exposed surface tempera-
ture cannot be maintained at the ablating temperature. That is, more
heat is being conducted internally from the heated surface than is
available at the heated surface. The following list shows how to find

the net heating rate at which ablation ceases for all structural arrange-

ments considered in this report. In each equation listed, T; is set
equal to Ty, before solving for the critical value of qpet-

1.  Flot Plate

a. General Thick

Ta
< = .
(1) 0gas—
Equation (168) solved for dnet- (297)
T
(2) -{—1 < agT,.
Equation (174) solved for Gnetor (298)

b. Special Thick

.
(1) Ogag—za—.

Equation {181) solved for dnet, - (299)
T
(2) --Z-a- <agTg.
Equation (187) solved for dnet - (300)
95




<. Special Thick-Thin

(1) Osag-z—.

Equation (193) solved for Anetg:

T

(2) 7a< ag T,

Equation (199) solved for dnety

d. Special Thick-Thick

T

(1) 0g asTa

Equation (205) solved for Inety-

.
2) == <ac<T

2 a:

Equation (211) solved for Inet,’

¢. Special Thick-Thin- Thick

r
a
(1) 0<ag >
Equation (217) solved for dnety:
T
(2) = <a g7,

2

Equation (223) solved for Unety’

2.  Cylinder

a. General Thick

T
(1) 0<ag—

sag— .
Fquation (227) solved for qpet,.

96
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Ta
(2) -E' <ag Tz

Equation (231) solved for qpey,, -

b. Special Thick

(1) 05a_<_—2— .

Equation (233) solved for Unety

.
(2) 7a<agTa.

Equation (235) solved for qpet .

c. Special Thick-Thin

Ta
(1) Osag—z—.

Equation (237) solved for qpet,.

Equation (239) solved for qpet -

d. Special Thick-Thick

T
a

Equation (241) solved for Unety

Ta
(2.) —2—- <ag Ty,

[

Equation (243) solved for Anet,:

(308)

(309)

(310)

(311)

(312)

(313)

(314)
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e. Special Thick-Thin-Thick

T
a
(1) 0gag 5.

Equation (245) solved for et

T

a
(2) 5 <ag Ta

Equation (247) solved for qpet,-

3.  Sphere

a. General Thick

,
(1) 0<a5-2—a-.

Solve for Qpeto in Equation (227) with Equations (251)
through (255) included.

Solve for Anetq in Equation (231) with Equations (258)
through (261) included.

b. Special Thick

(1) Ogag-z—.

Solve for Unete in Equation (233) with Equations (262)
through (266) included.

T

- ©(2) ——za‘ <acTa.

Solve for quet, in Equation (235) with Equations (267)
through (269) included. '
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c. Special Thick-Thin

- e am— e

e g

Ta
(1) Ogas-—z—.

Solve for Unet, in Equation (237) with Equations (270)
through {274) included. (321)

T
(2) 'Z'a-<aSTa. :

L

Solve for qpet, in Equation (239) with Equations (275)
through (278) included. (322)

i d. Special Thick-Thick

,
(1) osag—z’?‘-.

Solve for dnet, in Equation (241) with Equations (279) ;

through (283) included. (323)

[t T

) (2) -E§<ag1'a.

| Solve for gpet, in Equation (243) with Equations (284)
| through (287) included. (324)

e. Special Thick-Thin- Thick

-
a
(1) 0535—2—.

Solve for Uneto in Equation (245) with Equations (288)
FE through (292) included. (325)

T

() 5 <a g7,

S R =, AR

o

Sclve for Unet, in Equation (247) with Equations (293)
¢ through (296) included. (326)
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Section Vi. CONCLUSIONS

Fxcellent agreement is obtained between data generated by the
combinced forward-backward finite-difference equations and selected
exact analytical equations for a flat plate undergoing surface recession,
when proper time and distance increments are chosen in relation to
material thermal propertics and surface recession rates. The com-
bined forward-backward finite-difference ablation-conduction method
is most accurate when the amount of material removed in a calculation
time increment is cqual to or less than onc-fourth of the selected
incremental distance between temperature nodes,

Using the methods presented in this report, simultaneous conduc-
tion and ablation calculations for transient, radial heat flow in spheres
and cylinders and onc-dimensional heat flow in flat plates requires a
; negligible increase in computer time over a nonreceding case with all
othier parameters being identical. This is true primarily because the
majority of the equations used are identical with those used in nonreces-
sion cases,

Forward-backward finite-difference cquations can be mixed to
achicve simplicity and to avoid instability in equations for heat flow
ncar the surface of ablating, subliming, or melting structural materials.

Centripetal ablation and heat flow equations for cylind
spheres can be modified by minor sign changes to obtain ce.
ablation and heat flow equations for cylinders and spheres.
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Appendix A

DERIYATION OF CENTRIFUGAL HEAT CONDUCTION AND ABLATION
EQUATIONS AND A COMPARISON OF THESE EQUATIONS WITH
THOSE FOR CENTRIPETAL HEAT FLOW

1. Cylinder
The energy balance for the radial heat flow away from the
centerline (centrifugal) of a cylinder (Figure 22) will now be derived
for the General Thick case during ablation. For centrifugal flow, R
is the inside radius instead of the outside radius used for centripetal
flow in Sections I, III, IV, and V of this report.

-
a
a. Ogcag—
2

The energy balance for T; is

9cond 1‘?2 * qcondf}z = dstored 2 (327)
1—2 32 2
or
k k .
—2— Tm- T;) A+ —= (T;-Tz) A
(Ta - a) 1-2 Ta 3-2
_ (T.;. - Tz) 328)
=PacCaTa At (
where
- Ta _ a
- oL|{R +ZT2 .2 (329)
1-2 ] 2
Ta
A - oL|R +"2:TZ =2 (330)
3-2 ' 2 “
A; = OL R+Erz] . (331)
Letting
ky At
By = ——9—"—"—2 , Z:-R +ZTZ ,
PaaTa
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and solving for T,

[ v -a .
?’-at‘._’] ' 7"_22 'a"’-‘\ N
, T b7 + T, 7 2] oT,( o
T; ;
a T

i T, - ¢ (332)
Z - a 'I,o—g . - T, . .
B, [ .ZZ J \ ﬂa{ > Z] ( dfaa) , a?aa

b, =~ <agrT,

The energy balance for T, is

%cond 1“3‘2 * 9cond 392 ® Astored 2
1—2 32 2 (333)
or
ka 1 kg
T - T + — T3 - T') A
Ta'a<m 2)1'2 Ta(3 23-2
3r 1
a T, - T
= pa Ca '_2 -3) ( ZAt 2) A (334)
where
_ r - a
A = 6L R+E Ty - (335)
1-2 2
L
. ‘s
A = 8L IR +§ To 5 (336)
3-2 L 2
. - a
A; = L R+§Tz -—-T ¢ (337)
Letting
ka At
Bg=—s , Z:=R+¥Tm2,
PaCaTa E

and solving for T:o_

i g i T o -




Equations (106) and (332) are similar as arc Equations (109) and
(338). Equation (332) can be obtained from Equation (106) by substituting
amultiplication factor into Equation (106). The same is true for Equation
(109) to obtain Equation (338). The resulting substitutions and cquations
are:

Z=R- (XQ)) 12 . (339)

-
a

c. O0<a<g—
sas

T_o-a T
7*(-‘(0)"5"2" , 7-(XQ)-—&2 Ta-a Ta-a
Ty (8.) —__7_—— Ty B, 7 Ta + Te Ta
T. - a T
74 (XQ) = 2 (X0 5| fro-a\  1,-a
Ba _————7. ] ﬁa 7 . ) (3 T (340)

T

a
d. —2—<ag'ra

Y. - a T Ir
m Ba) ' T + Ty Ba ™ ) + T, X

va - 2a
Z + (XQ) e

2 ———

T,-a v 3 )
7 - (xQ) e , (r, . ..) z - (x0) -2 (—;3 . a)(-a . a)
- e v Ba ——= '
T, - 2a \F <2 ral?
z v (x@ -2 ! z v (xQ) 222 ! (341)

i 1

Factor XQ takes on the value of +1 for centripetal flow and -1 for
centrifugal flow. The appropriate radius is that radius to the original
T) nodal point. Only one set of equations is compared here; however,
all of the equations for the cylindrical flow have been investigated and
can be arranged in this form.

Due to the nondimeasional terms used, it is also possible to use a
-R value for R and achieve the same results. In other words, the
centripetal equations presented in the main body of this report can be
used in their present form to determine centrifugal heat flow results
simply by inserting the radius to the initial inner surface as a negative
value.

T e oo

e

2.  Sphere

The energy balance for the radial flow away from the center ;
in a sphere {Figure 27) will now be derived for the General Thick case
during ablation. For centrifugal flow, R is the inside radius instead
of the outside radius used for centripetal flow in Sections 1I, III, IV,
and V of this report.
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T
a

a. 0<a< —
- =2

The energy balance for T, is

9cond x/-\z t Qcond 3{‘2 * Gstored At

1—=2 32 2
or
ka ka
——— (T -T') A +— (T'-T' A
(Ta - a) < m 2 I3 Ta 3 2 -2
(T - T
2 - T
Pa€aTa T A Az
where
I T al (T )Z
a’” a~ @
A To -
1-2 ¢ (R +Zrz 2 > ¥ 12 }
r 2 2
T T
a a
Aot 2o ? +—r}

<R
- -
A, - b (R 421-2)2 +%]

Letting

k, At
B —2

a - 2
PaCaTa

’ Z;R+ETZ ,

and solving for T,

: f ) v ¢ 71
- I -
/ ﬂ;*) - -
!‘ ot - LR . N
Y
12

T
a

b. —- <a < Ty
Lo

ot) R BN RO :
Thtiplh - - <. = 1y 63, o -, - CI S -
/'."'.: AT '
1 l‘. o ! - - - -

The energy balance for T, is

At ¥ ¢ A
4 ond l‘-\z. Q¢ ond 3_1\2 Istored

1-+2 32 2

1044
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(343)

(344)

(345)

(346)

(347)

(348)




or

3T, N
- Pa Ca <'-Z2 - a) LI*A—A'(*LZ')‘ Ay (349)

- 2 2
T - a ("' - a)
a a .
11_&.2 - (R ] E Ty - Z-—-) 4 —z ] (350)
Ta 2 T,2
3{\2 -9 (R fE T2+—é—) +—E} (351)
2 2
T, - 2a (3Ta - 2a)
E - . 2
A, o (R + T2 2 + 18 (352)

Letting

ka At

By = ————5— ) Z=R+) 72 ,
& pacy Tyl E

and solving for T;

T, a {ry - a) 1 Ta L (lv‘ |
1o ) ot T ¥3 e, (22 Y] 2 " *N\ac
f ———— ‘
m T, . .‘..u)‘ 51, - 2a) B NN Tas2a ) v, . 2a) ! \5
VAR et 2 —-—) +
- [ 18 _ 3 18
! Tat? : s - a)l 1 ray? “at N e
(" s ¢ m——m—— v, - a (7 ".—) .- - - ('a ﬂ)
8 2 12 .8 2 H 12 . 2
* . Ta” a")' (v, - 2a)? 2\ 7a 1, 2a ; (v, - 2a)f [N
S s R (353)

Equations (136) and (347) are similar and Equations (139) and (353)
are similar. If a multiplication factor is substituted into Equation (136),
onc obtains Equation (347). The same is true for Equation (139) to
obtain Equation (353). The resulting substitutions and cquations are:

Z-R-(XQY . (354)
0<ag—2
c. as -

(PR o ) :-‘“-3') (7-(\0)-:,:):--';— “: N 7 -‘,‘: R
{ e "—] [ o ]( S (355)
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7 1 H 12 a {2
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: : )
T ' ir
Q-(XQ)—E) o =2 (—-’-‘-a)v -A)
, H [ ta A 3 a
+ Ty Ba SR U (" ) Ty
a ) T, - 2a) "
S L 4

IAYEN Y N
(Z-(XQ)—;) 'l_‘z (,‘_‘) —52 -,;)(-.-.n)

v, - 2a\0 (. -2 v ' %)
o), a2t ™ : (356)

7 + (XQ)

o)

L}

Factor XQ takes on the value of +1 for centripetal flow and -1 for
centrifugal flow. For centripetal flow the radius to the original outer
surface is used, while for centrifugal flow the radius to the original
inner surface is used. Only one sect of equations is compared here;
however, all of the equations for the spherical flow can be arranged in
this form.

Due to the nondimensional terms used, it is also possible to use
a -R value for R and achieve the same results. Thus, the centripetal
cquations presented in the main body of this report for spheres can be
used in their present form to calculate centrifugal heat flow effects by
inserting the radius to the initial inner surface as a negative value.
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Appendix B

COMPARISON OF THEORET!CAL TEMPERATURE RESULTS USING
FINITE-DIFF ERENCE TECHNIQUES FOR FLAT PLATES DURING ABLATION

The designer or analyst always encounters a basic question when
using numerical techniques; '""How well do the results from these
techniques compare with data obtained from exact solutions?'" There
is only one exact solution that may be readily used to obtain data for
comparison with data generated from the forward-backward finite-
difference equations described in this report. This exact solution is
for a semi-infinite solid, ablating at a constant rate and surface tem-
perature, with the ablated material removed from the surface and swept
downstream. This solution also assumes constant thermal properties.

\ . 3
The exact solution is

Ty - To - 2%

m =e @ (357)
where

Ty = Temperature at distance x in from the exposed surface.

T, = Melting, ablating, or subliming temperature.

To = Temperature at x = o from the exposed surface.

a = Ablation rate.
x = Distance in from the exposed surface.
a = Thermal diffusivity of the material,

The General Thick equations were used to obtain temperature data
for comparison with results from exact solutions. The input values
for the exact and finite-difference methods were the following:

ablation rates, &, = 0,1, 0.25, 0.4, and 0.5 mm/sec.

Tm = 2000°K.
Teo = 300°K.
Ta =0.00lm=1.0mm.

4
"

1.0 sec.

3H. S. Carslaw and J. C. Jaeger, CONDUCTION OF HEAT IN
SOLIDS, Sccond Edition, New York, New York, Oxford University
Press, 1959,
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C 0.4 kcal/Kg - K
k 0. 36 kcal/m-hr-" K

a
B, 0.25
pa 1000 Ky/u’
ka Tal -t 2
Q -";T'(—; ﬁa Zt— 9x 10 m /hl’

The steady-state temperature gradient for the finite-difference
method was obtained by raising the surface temperature of a semi-
infinite slab to the ablating temperature at time zero and calculating
the surface recession and temperature distributions for a sufficient
time to obtain a steady, nonchanging temperature profile (with respect
to distance from the receding surface) in the slab., Comparisons of
these steady-state temperature profiles with those obtained from exact
solutions are presented in Figures 32 through 35 for four different
recession rates. The temperature data comparisons presented in th(\s\w
figures show that the accuracy of the finite-difference method is best
when the amount of material removed during a calculation time incre-
ment is small in relation to the selected incremental distance between
temperature nodes. For example with the § and ablation rate held
constant at 0.25 and 0.5 mm/scc respectively, the accuracy of the
finite-difference method is improved by decreasing the 4t and T as
shown 1n Figure 35. This new sclection of parameceters reduces the
r o of a At/7 thereby improving the accuracy of the numerical
approximations.

Based on the temperature gradient comparisons in Figures 32
through 35, a parameter may be cstablished as a guide in selecting
proper inputs which will result i acceptable finite-difference accuracies.
If the finite-difference temperatu deviations shown in Figures 32 and
33 are acceptable and those shown in Figure 34 and solution No, 1 of
Figure 35 are not acceptable, “or instance, an upper limit of 0,25 for
a M/7 is established,  Mathematically this criterion is stated as

fAU s (358)

-

oo s the manimum evpected rocession rate,



Equation (358) can be written in another form by considering that
kAt
pcT?

B =

and a = pic This equation is

;&-p < 0.25 (359)

Equation (359) contains the terrn a7/a which is equivalent to ax/a
in Equation (357). If this term is too large the relative temperature
difference between T, and Ty _ 1 is quite large. Based on the con-
ditions considered in the steady-state temperature comparisons of
Figures 32 through 35, an acceptable upper limit for the finite-
difference criterion a7T/a is unity. With a7/a < 1 the temperature
difference between T, and T, (located one 7 from T,,) is a maximum
of approximately 63 percent of the difference between T, and the
initial equilibrium temperature of the slab.

Satisfying the conditions of B < 0.5, aAt/T < 0.25, and a7/a < 1
before performing a finite-difference recession-condition analysis
aids in insuring that the computed heat transfer in the slab will be
reasonably accurate.
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